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Predictive Soil Mapping for advanced R users

 

 

This is the online version of the Open Access book: Predictive Soil Mapping with R1. Pull
requests and general comments are welcome. These materials are based on technical tutorials
initially developed by the ISRIC’s2 Global Soil Information Facilities (GSIF) development team
over the period 2014–2017.

This book is continuously updated. For news and updates please refer to the github issues3.

Hard copies of this book can be ordered from www.lulu.com4. By purchasing a hard copy of this
book from Lulu you donate $12 to the OpenGeoHub foundation.

Cite this as:

• Hengl, T., MacMillan, R.A., (2019). Predictive Soil Mapping with R. OpenGeoHub founda-
tion, Wageningen, the Netherlands, 370 pages, www.soilmapper.org, ISBN: 978-0-359-30635-0.

1 https://envirometrix.github.io/PredictiveSoilMapping/
2 http://isric.org/
3 https://github.com/envirometrix/PredictiveSoilMapping/issues
4 http://www.lulu.com/spotlight/t_hengl
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Preface

Predictive Soil Mapping (PSM) is based on applying statistical and/or machine learning tech-
niques to fit models for the purpose of producing spatial and/or spatiotemporal predictions of
soil variables, i.e. maps of soil properties and classes at different resolutions. It is a multidisci-
plinary field combining statistics, data science, soil science, physical geography, remote sensing,
geoinformation science and a number of other sciences (Scull et al, 2003; McBratney et al, 2003;
Henderson et al, 2004; Boettinger et al, 2010; Zhu et al, 2015). Predictive Soil Mapping with R
is about understanding the main concepts behind soil mapping, mastering R packages that can
be used to produce high quality soil maps, and about optimizing all processes involved so that
production costs can also be reduced.

The main differences between predictive vs traditional expert-based soil mapping are that: (a)
the production of maps is based on using state-of-the-art statistical methods to ensure objectivity
of maps (including objective uncertainty assessment vs expert judgment), and (b) PSM is driven
by automation of the processes so that overall soil data production costs can be reduced and
updates of maps implemented without requirements for large investments. R, in that sense, is a
logical platform to develop PSM workflows and applications, especially thanks to the vibrant and
productive R spatial interest group activities and also thanks to the increasingly professional soil
data packages such as, for example: soiltexture, aqp, soilprofile, soilDB and similar.

The book is divided into sections covering theoretical concepts, preparation of covariates, model
selection and evaluation, prediction and final practical tips for operational PSM. Most of the
chapters contain R code examples that try to illustrate the main processing steps and give practical
instructions to developers and applied users.

Connected publications

Most of methods described in this book are based on the following publications:
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https://link.springer.com/article/10.1007/s10705-017-9870-x
http://dx.doi.org/10.1371/journal.pone.0169748
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https://doi.org/10.1016/j.spasta.2015.04.001
https://doi.org/10.1016/j.jag.2012.02.005
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especially: Verifiability, Reproducibility, No original research, Neutral point of view, Good faith,
No conflict of interest, and No personal attacks.

Reproducibility

To reproduce the book, you need a recent version of R34, and RStudio35 and up-to-date packages,
which can be installed with the following command (which requires devtools36):

32 https://spacetimewithr.org
33 https://en.wikipedia.org/wiki/Wikipedia:Five_pillars
34 https://cran.r-project.org
35 http://www.rstudio.com/products/RStudio/
36 https://github.com/hadley/devtools
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devtools::install_github("Envirometrix/PSMpkg")

To build the book locally, clone or download37 the PredictiveSoilMapping repo38, load R in root
directory (e.g. by opening PredictiveSoilMapping.Rproj39 in RStudio) and run the following lines:

bookdown::render_book("index.Rmd") # to build the book
browseURL("docs/index.html") # to view it
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Chapter 1

Soil resource inventories and soil maps

Edited by: Hengl T. & MacMillan R.A.

1.1 Introduction

This chapter presents a description and discussion of soils and conventional soil inventories framed
within the context of Predictive Soil Mapping (PSM). Soils, their associated properties, and their
spatial and temporal distributions are the central focus of PSM. We discuss how the products and
methods associated with conventional soil mapping relate to new, and emerging, methods of PSM
and automated soil mapping. We discuss similarities and differences, strengths and weaknesses of
conventional soil mapping (and its inputs and products) relative to PSM.

The universal model of soil variation presented further in detail in chapter 5 is adopted as a
framework for comparison of conventional soil mapping and PSM. Our aim is to show how the
products and methods of conventional soil mapping can complement, and contribute to, PSM
and equally, how the theories and methods of PSM can extend and strengthen conventional soil
mapping. PSM aims to implement tools and methods that can be supportive of growth, change and
improvement in soil mapping and that can stimulate a rebirth and reinvigoration of soil inventory
activity globally.

1.2 Soils and soil inventories

1.2.1 Soil: a definition

Soil is a natural body composed of biota and air, water and minerals, developed from un-
consolidated or semi-consolidated material that forms the topmost layer of the Earth’s surface
(Chesworth, 2008). The upper limit of the soil is either air, shallow water, live plants or plant
materials that have not begun to decompose. The lower limit is defined by the presence of hard
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rock or the lower limit of biologic activity (Richter and Markewitz, 1995; Soil survey Division
staff, 1993). Although soil profiles up to tens of meters in depth can be found in some tropical
areas (Richter and Markewitz, 1995), for soil classification and mapping purposes, the lower limit
of soil is often arbitrarily set to 2 m (http://soils.usda.gov/education/facts/soil.html). Soils are
rarely described to depths beyond 2 m and many soil sampling projects put a primary focus on
the upper (0–100 cm) depths.

The chemical, physical and biological properties of the soil differ from those of unaltered (uncon-
solidated) parent material, from which the soil is derived over a period of time under the influence
of climate, organisms and relief effects. Soil should show a capacity to support life, otherwise we
are dealing with inert unconsolidated parent material. Hence, for purposes of developing statistical
models to predict soil properties using PSM, it proves useful to distinguish between actual and
potential soil areas (see further section 1.4.4).

A significant aspect of the accepted definition of soil is that it is seen as a natural body that
merits study, description, classification and interpretation in, and of, itself. As a natural body soil
is viewed as an object that occupies space, has defined physical dimensions and that is more than
the sum of its individual properties or attributes. This concept requires that all properties of soils
be considered collectively and simultaneously in terms of a completely integrated natural body
(Soil survey Division staff, 1993). A consequence of this, is that one must generally assume that
all soil properties covary in space in lockstep with specific named soils and that different soil
properties do not exhibit different patterns of spatial variation independently.

From a management point of view, soil can be seen from at least three perspectives. It is a:

• Resource of materials — It contains quantities of unconsolidated materials, rock fragments,
texture fractions, organic carbon, nutrients, minerals and metals, water and so on.

• Stabilizing medium / ecosystem — It acts as a medium that supports both global and local
processes from carbon and nitrogen fixation to retention and transmission of water, to provision
of nutrients and minerals and so on.

• Production system — Soil is the foundation for plant growth. In fact, it is the basis of all
sustainable terrestrial ecosystem services. It is also a source of livelihood for people that grow
crops and livestock.

According to Frossard et al (2006) there are six key functions of soil:

1. food and other biomass production,

2. storage, filtering, and transformation of water, gases and minerals,

3. biological habitat and gene pool,

4. source of raw materials,

5. physical and cultural heritage and

6. platform for man-made structures: buildings, highways.

Soil is the Earth’s biggest carbon store containing 82% of total terrestrial organic carbon (Lal,
2004).

http://soils.usda.gov/education/facts/soil.html
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1.2.2 Soil variables

Knowledge about soil is often assembled and catalogued through soil resource inventories. Con-
ventional soil resource inventories describe the geographic distribution of soil bodies i.e. polypedons
(Wysocki et al, 2005). The spatial distribution of soil properties is typically recorded and described
through reference to mapped soil individuals and not through separate mapping of individual soil
properties. In fact, the definition of a soil map in the US Soil Survey Manual specifically “excludes
maps showing the distribution of a single soil property such as texture, slope, or depth, alone or
in limited combinations; maps that show the distribution of soil qualities such as productivity or
erodibility; and maps of soil-forming factors, such as climate, topography, vegetation, or geologic
material” (Soil survey Division staff, 1993).

In contrast to conventional soil mapping, PSM is primarily interested in representing the spatial
distribution of soil variables — measurable or descriptive attributes commonly collected through
field sampling and then either measured in-situ or a posteriori in a laboratory.

Soil variables can be roughly grouped into:

1. quantities of some material (𝑦 ∈ [0 → +∞]);
2. transformed or standardized quantities such as pH (𝑦 ∈ [−∞ → +∞])
3. relative percentages such as mass or volume percentages (𝑦 ∈ [0 → 1]);
4. boolean values e.g. showing occurrence and/or non-occurrence of qualitative soil attributes or

objects (𝑦 ∈ [0, 1]);
5. categories (i.e. factors) such as soil classes (𝑦 ∈ [𝑎, 𝑏, … , 𝑥]);
6. probabilities e.g. probabilities of occurrence of some class or object (𝑝(𝑦) ∈ [0 → 1]).
7. censored values e.g. depth to bedrock which is often observed only up to 2 m.

The nature of a soil variable determines how the attribute is modeled and presented on a map in
PSM. Some soil variables are normally described as discrete entities (or classes), but classes can
also be depicted as continuous quantities on a map in the form of probabilities or memberships (de
Gruijter et al, 1997; McBratney et al, 2003; Kempen et al, 2009; Odgers et al, 2011). For example,
a binary soil variable (e.g. the presence/absence of a specific layer or horizon) can be modeled as a
binomial random variable with a logistic regression model. Spatial prediction (mapping) with this
model gives a map depicting (continuous) probabilities in the range of 0–1. These probabilities
can be used to determine the most likely presence/absence of a class at each prediction location,
resulting, then, in a discrete representation of the soil attribute variation.

In that context, the aims of most soil resource inventories consist of the identification, mea-
surement, modelling, mapping and interpretation of soil variables that represent transformed or
standardized quantities of some material, relative percentages, occurrence and/or non-occurrence
of qualitative attributes or objects, and/or soil categories.
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1.2.3 Primary and secondary soil variables

Soil properties can be primary or inferred (see further section 3). Primary properties are properties
that can be measured directly in the field or in the laboratory. Inferred properties are properties
that cannot be measured directly (or are difficult or too expensive to measure) but can be inferred
from primary properties, for example through pedotransfer functions (Wösten et al, 2001, 2013).
Dobos et al (2006) also distinguish between primary and secondary soil properties and ‘functional’
soil properties representing soil functions or soil threats. Such soil properties can be directly
used for financial assessment or for decision making. For example, soil organic carbon content in
grams per kilogram of soil is the primary soil property, while organic carbon sequestration rate in
kilograms per unit area per year is a functional soil property.

1.3 Soil mapping

1.3.1 What are soil resource inventories?

Soil resource inventories describe the types, attributes and geographic distributions of soils in a
given area. They can consist of spatially explicit maps or of non-spatial lists. Lists simply itemize
the kinds and amounts of different soils that occupy an area to address questions about what soils
and soil properties occur in an area. Maps attempt to portray, with some degree of detail, the
patterns of spatial variation in soils and soil properties, within limits imposed by mapping scale
and resources.
According to the USDA Manual of Soil Survey (Soil survey Division staff, 1993), a soil survey:

• describes the characteristics of the soils in a given area,
• classifies the soils according to a standard system of classification,
• plots the boundaries of the soils on a map, and
• makes predictions about the behavior of soils.

The information collected in a soil survey helps in the development of land-use plans and evaluates
and predicts the effects of land use on the environment. Hence, the different uses of the soils and
how the response of management affects them need to be considered.
This attribute of conventional soil mapping (soil individuals) represents a significant difference
compared to PSM, where the object of study is frequently an individual soil property and the
objective is to map the pattern of spatial distribution of that property (over some depth interval),
and independent from consideration of the spatial distribution of soil individuals or other soil
properties.
Soil maps give answers to three basic questions: (1) what is mapped? (2) what is the predicted
value? and (3) where is it? Thematic accuracy of a map tells us how accurate predictions of
targeted soil properties are overall, while the spatial resolution helps us locate features with some
specified level of spatial precision.
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The most common output of a soil resource inventory is a soil map. Soil maps convey information
about the geographic distribution of named soil types in a given area. They are meant to help
answer the questions “what is here” and “where is what” (Burrough and McDonnell, 1998).

Any map is an abstraction and generalization of reality. The only perfect one-to-one representation
of reality is reality itself. To fully describe reality one would need a model at 1:1 scale at which
1 m2 of reality was represented by 1 m2 of the model. Since this is not feasible, we condense
and abstract reality in such a way that we hope to describe the major differences in true space
at a much reduced scale in model (map) space. When this is done for soil maps, it needs to be
understood that a soil map can only describe that portion of the total variation that is systematic
and has structure and occurs over distances that are as large as, or larger than, the smallest area
that can be feasibly portrayed and described at any given scale. Issues of scale and resolution are
discussed in greater detail in section 4.2.2.

An important functionality of PSM is the production and distribution of maps depicting the
spatial distribution of soils and, more specifically, soil attributes. In this chapter we, therefore,
concentrate on describing processes for producing maps as spatial depictions of the patterns of
arrangement of soil attributes and soil types.

1.3.2 Soil mapping approaches and concepts

As mentioned previously, spatial information about the distribution of soil properties or attributes,
i.e. soil maps or GIS layers focused on soil, are produced through soil resource inventories, also
known as soil surveys or soil mapping projects (Burrough et al, 1971; Avery, 1987; Wysocki et al,
2005; Legros, 2006). The main idea of soil survey is, thus, the production and dissemination of soil
information for an area of interest, usually to address a specific question or questions of interest
i.e. production of soil maps and soil geographical databases. Although soil surveyors are usually
not per se responsible for final use of soil information, how soil survey information is used is
increasingly important.

In statistical terms, the main objective of soil mapping is to describe the spatial variability i.e. spa-
tial complexity of soils, then represent this complexity using maps, summary measures, mathe-
matical models and simulations. Some known sources of spatial variability in soil variables
are:

1. Natural spatial variability in 2D (different at various scales), mainly due to climate, parent
material, land cover and land use;

2. Variation by depth;

3. Temporal variation due to regular or periodic changes in the ecosystem;

4. Measurement error (in situ or in lab);

5. Spatial location error;

6. Small scale variation;
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In statistical terms, the main objective of soil mapping is to describe the spatial complexity of
soils, then represent this complexity using maps, summary measures, mathematical models and
simulations. From the application point of view, the main application objective of soil mapping is
to accurately predict response of a soil(-plant) ecosystem to various soil management strategies.

Soil mappers do their best to try to explain the first two items above and minimize, or exclude from
modelling, the remaining components: temporal variation, measurement error, spatial location
error and small scale variation.

 

Measured data Modelled data

Meteorological 
parameters

Soil lab data
Soil site / profile 

description

(primary soil properties)

Secondary 
(functional) soil 

properties

Soil-plant model, soil-
runoff model, soil 

sequestration model ...

Crop response (yield)
Available water

Erosion / landslide risk
Nutrient stock ...

Soil spectral 
measurements

(proximal and remote 
sensing)

 

Fig. 1.1 Inputs to soil-plant, soil-hydrology or soil-ecology models and their relationship.

From the application point of view, the main objective of soil mapping is to accurately predict
soil properties and their response to possible or actual management practices (Fig. 1.1). In other
words, if the soil mapping system is efficient, we should be able to accurately predict the behavior
of soil-plant, soil-hydrology or similar ecosystems to various soil management strategies, and hence
provide useful advice to agronomists, engineers, environmental modelers, ecologists and similar.

We elect here to recognize two main variants of soil mapping which we refer to as conventional soil
mapping and pedometric or predictive soil mapping as described and discussed below (Fig. 1.2).
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Fig. 1.2 Matrix comparison between traditional (primarily expert-based) and automated (data-driven) soil
mapping.

1.3.3 Theoretical basis of soil mapping: in context of the universal
model of spatial variation

Stated simply, “the scientific basis of soil mapping is that the locations of soils in the landscape
have a degree of predictability” (Miller et al, 1979). According to the USDA Soil Survey Manual,
“The properties of soil vary from place to place, but this variation is not random. Natural soil bodies
are the result of climate and living organisms acting on parent material, with topography or local
relief exerting a modifying influence and with time required for soil-forming processes to act. For
the most part, soils are the same wherever all elements of these five factors are the same. Under
similar environments in different places, soils are expected to be similar. This regularity permits
prediction of the location of many different kinds of soil” (Soil survey Division staff, 1993). Hudson
(2004) considers that this soil-landscape paradigm provides the fundamental scientific basis for soil
survey.

In the most general sense, both conventional soil mapping and PSM represent ways of applying the
soil-landscape paradigm via the universal model of spatial variation, which is explained in greater
detail in chapter 5. Burrough and McDonnell (1998, p.133) described the universal model of soil
variation as a special case of the universal model of spatial variation. This model distinguishes
between three major components of soil variation: (1) a deterministic component (trend), (2) a
spatially correlated component and (3) pure noise.

𝑍(s) = 𝑚(s) + 𝜀′(s) + 𝜀″(s) (1.1)

where s is the two-dimensional location, 𝑚(s) is the deterministic component, 𝜀′(s) is the spatially
correlated stochastic component and 𝜀″(s) is the pure noise (micro-scale variation and measure-
ment error).



22 1 Soil resource inventories and soil maps

The universal model of soil variation assumes that there are three major components of soil varia-
tion: (1) a deterministic component (function of covariates), (2) a spatially correlated component
(treated as stochastic) and (3) pure noise.

The deterministic part of the equation describes that part of the variation in soils and soil prop-
erties that can be explained by reference to some model that relates observed and measured
variation to readily observable and interpretable factors that control or influence this spatial vari-
ation. In conventional soil mapping, this model is the empirical and knowledge-based soil-landscape
paradygm (Hudson, 2004). In PSM, a wide variety of statistical and machine learning models have
been used to capture and apply the soil-landscape paradigm in a quantitative and optimal fashion
using the CLORPT model:

𝑆 = 𝑓(𝑐𝑙, 𝑜, 𝑟, 𝑝, 𝑡) (1.2)

where 𝑆 stands for soil (properties and classes), 𝑐𝑙 for climate, 𝑜 for organisms (including humans),
𝑟 is relief, 𝑝 is parent material or geology and 𝑡 is time. The Eq. (1.2) is the CLORPT model
originally presented by Jenny (1994).

McBratney et al (2003) re-conceptualized and extended the CLORPT model via the “scorpan”
model in which soil properties are modeled as a function of:

• (auxiliary) soil classes or properties,

• climate,

• organisms, vegetation, fauna or human activity,

• relief,

• parent material,

• age i.e. the time factor,

• n space, spatial context or spatial position,

Pedometric models are quantitative in that they capture relationships between observed soils,
or soil properties, and controlling environmental influences (as represented by environmental
co-variates) using statistically-formulated expressions. Pedometric models are seen as optimum
because, by design, they minimize the variance between observed and predicted values at all loca-
tions with known values. So, no better model of prediction exists for that particular set of observed
values at that specific set of locations.

Both conventional and pedometric soil mapping use models to explain the deterministic part of
the spatial variation in soils and soil properties. These models differ mainly in terms of whether
they are empirical and subjective (conventional) or quantitative and objective (pedometric). Both
can be effective and the empirical and subjective models based on expert knowledge have, until
recently, proven to be the most cost effective and widely applied for production of soil maps by
conventional means.
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In its essence, the objective of PSM is to produce optimal unbiased predictions of a mean value at
some new location along with the uncertainty associated with the prediction, at the finest possible
resolution.

One way in which PSM differs significantly from conventional soil mapping in terms of the uni-
versal model of soil variation is in the use of geostatistics or machine learning to quantitatively
correct for error in predictions, defined as the difference between predicted and observed values at
locations with known values. Conventional soil mapping has no formal or quantitative mechanism
for correcting an initial set of predicted values by computing the difference between predicted and
observed values at sampled locations and then correcting initial values at all locations in response
to these observed differences. PSM uses geostatistics to determine (via the semi-variogram) if the
differences between predicted and observed values (the residuals) exhibit spatial structure (e.g. are
predictable). If they do exhibit spatial structure, then it is useful and reasonable to interpolate
the computed error at known locations to predict the likely magnitude of error of predictions at
all locations (Hengl et al, 2007a).

Neither conventional soil mapping nor PSM can do more than simply describe and quantify the
amount of variation that is not predictable and has to be treated as pure noise. Conventional soil
maps can be criticized for ignoring this component of the total variation and typically treating it
as if it did not exist. For many soil properties, short range, local variation in soil properties that
cannot be explained by either the deterministic or stochastic components of the universal model
of soil variation can often approach, or even exceed, a significant proportion (e.g. 30–40%) of the
total observed range of variation in any given soil property. Such variation is simply not mappable
but it exists and should be identified and quantified. We do our users and clients a disservice
when we fail to alert them to the presence, and the magnitude, of spatial variation that is not
predictable. In cases where the local spatial variation is not predictable (or mappable) the best
estimate for any property of interest is the mean value for that local area or spatial entity (hence
not a map).

1.3.4 Traditional (conventional) soil mapping

Traditional soil resource inventories are largely based on manual application of expert tacit knowl-
edge through the soil-landscape paradigm (Burrough et al, 1971; Hudson, 2004). In this approach,
soil surveyors develop and apply conceptual models of where and how soils vary in the landscape
through a combination of field inspections to establish spatial patterns and photo-interpretation
to extrapolate the patterns to similar portions of the landscape (Fig. 1.3). Traditional soil mapping
procedures mainly address the deterministic part of the universal model of soil variation.

Conventional (traditional) manual soil mapping typically adheres to the following sequence of
steps, with minor variations (McBratney et al, 2003):

1. Specify the objective(s) to be served by the soil survey and resulting map;

2. Identify which attributes of the soil or land need to be observed, described and mapped to meet
the specified objectives;
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Fig. 1.3 Typical soil survey phases and intermediate and final products.

3. Identify the minimum sized area that must be described and the corresponding scale of mapping
to meet the specified objectives;

4. Collate and interpret existing relevant land resource information (geology, vegetation, climate,
imagery) for the survey area;

5. Conduct preliminary field reconnaissance and use these observations to construct a preliminary
legend of conceptual mapping units (described in terms of soil individuals);

6. Apply the preliminary conceptual legend using available source information to delineate initial
map unit boundaries (pre-typing);

7. Plan and implement a field program to collect samples and observations to obtain values of the
target soil attributes (usually classes) at known locations to test and refine initial conceptual
prediction models;

8. Using field observations, refine the conceptual models and finalize map unit legends and bound-
aries to generate conventional area–class soil maps;

9. Conduct a field correlation exercise to match mapping with adjacent areas and to confirm
mapping standards were adhered to;



1.3 Soil mapping 25

10. Select and analyse representative soil profile site data to characterize each mapped soil type and
soil map unit;

11. Prepare final documentation describing all mapped soils and soil map units (legends) according
to an accepted format;

12. Publish and distribute the soil information in the form of maps, geographical databases and
reports;

Expert knowledge about soil-landform patterns is generally used to produce manually drawn
polygon maps that outline areas of different dominant soils or combinations of soils — soil map
units (see Figs. 1.4 and 1.10). Soil map units (polygons of different soil types) are described in
terms of the composition of soil classes (and often also landscape attributes) within each unit, with
various soil physical and chemical variables attached to each class. Most commonly, the objective
of conventional soil mapping is to delineate recognizable portions of a landscape (soil–landform
units) as polygons in which the variation of soils and soil properties is describable and usually
(but not always) more limited than between polygons. Because most soil mapping projects have
limited resources and time, soil surveyors can not typically afford to survey areas in great detail
(e.g. 1:5000) so as to map actual polypedons (complex of contiguous pedons). As a compromise, the
survey team generally has to choose some best achievable target scale (e.g. 1:10,000 – 1:50,000).
Maps produced at some initial scale can be further generalized, depending on the application and
user demands (Wysocki et al, 2005).
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Fig. 1.4 Three basic conceptual scales in soil mapping: (left) most detailed scale showing the actual distribution
of soil bodies, (center) target scale i.e. scale achievable by the soil survey budget, (right) generalized intermediate
scale or coarse resolution maps. In a conventional soil survey, soils are described and conceptualized as groups of
similar pedons (smallest elements of 1–10 square-m), called “polypedons” — the smallest mappable entity. These
can then be further generalized to soil map units, which can be various combinations (systematic or random)
of dominant and contrasting soils (inclusions).

Where variation within a polygon is systematic and predictable, the pattern of variation in soils
within any given polygon is often described in terms of the most common position, or positions,
in the landscape occupied by each named soil class (MacMillan et al, 2005). In other cases, soil
patterns are not clearly related to systematic variations in observable landscape attributes and it
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is not possible to describe where each named soil type is most likely to occur within any polygon
or why.

Conventional soil mapping has some limitations related to the fact that mapping concepts (mental
models) are not always applied consistently by different mappers. Application of conceptual models
is largely manual and it is difficult to automate. In addition, conventional soil survey methods
differ from country to country, and even within a single region, depending largely on the scope
and level-of-detail of the inventory (Schelling, 1970; Soil Survey Staff, 1983; Rossiter, 2003). The
key advantages of conventional soil maps, on the other hand, are that:

• they portray the spatial distribution of stable, recognizable and repeating patterns of soils that
usually occupy identifiable portions of the landscape, and

• these patterns can be extracted from legends and maps to model (predict) the most likely soil at
any other location in the landscape using expert knowledge alone (Zhu et al, 2001).

Resource inventories, and in particular soil surveys, have been notoriously reluctant, or unable, to
provide objective quantitative assessments of the accuracy of their products. For example, most
soil survey maps have only been subjected to qualitative assessments of map accuracy through
visual inspection and subjective correlation exercises. In the very few examples of quantitative
evaluation (Marsman and de Gruijter, 1986; Finke, 2006), the assessments have typically focused
on measuring the degree with which predictions of soil classes at specific locations on a map,
or within polygonal areas on a map, agreed with on-the-ground assessments of the soil class at
these same locations or within these same polygons. Measurement error can be large in assessing
the accuracy of soil class maps. MacMillan et al (2010), for example, demonstrated that experts
disagreed with each other regarding the correct classification of ecological site types at the same
locations about as often as they disagreed with the classifications reported by a map produced
using a predictive model.

1.3.5 Variants of soil maps

In the last 20–30 years, soil maps have evolved from purely 2D polygon maps showing the distri-
bution of soil poly-pedons i.e. named soil classes, to dynamic 3D maps representing predicted or
simulated values of various primary or inferred soil properties and/or classes (Fig. 1.5). Examples
of 2D+T (2D space + time) and/or 3D+T soil maps are less common but increasingly popular
(see e.g. Rosenbaum et al (2012) and Gasch et al (2015)). In general, we expect that demand for
spatio-temporal soil data is likely to grow.
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Fig. 1.5 Classification of types of soil maps based on spatial representation and variable type.

A soil map can represent 2D, 3D, 2D+T and/or 3D+T distribution of quantitative soil properties
or soil classes. It can show predicted or simulated values of target soil properties and/or classes,
or inferred soil-functions.

The spatial model increasingly used to represent soil spatial information is the gridded or raster
data model, where most of the technical properties are defined by the grid cell size i.e. the ground
resolution. In practice, vector-based polygon maps can be converted to gridded maps and vice
versa, so in practical terms there are really few meaningful differences between the two models.
In this book, to avoid any ambiguity, when mentioning soil maps we will often refer to the spatio-
temporal reference and support size of the maps at the finest possible level of detail. Below, for
example, is a full list of specifications attached to a soil map produced for the African continent
(Hengl et al, 2015a):

• target variable: soil organic carbon in permille;

• values presented: predictions (mean value);

• prediction method: 3D regression-kriging;

• prediction depths: 6 standard layers (0–5, 5–15, 15–30, 30–60, 60–100, 100–200 cm);

• temporal domain (period): 1950–2005;

• spatial support (resolution) of covariate layers: 250 m;

• spatial support of predictions: point support (center of a grid cell);
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• amount of variation explained by the spatial prediction model: 45%;

Until recently, maps of individual soil properties, or of soil functions or soil interpretations, were
not considered to be true soil maps, but rather, to be single-factor derivative maps or interpretive
maps. This is beginning to change and maps of the spatial pattern of distribution of individual
soil properties are increasingly being viewed as a legitimate form of soil mapping.

1.3.6 Predictive and automated soil mapping

In contrast to traditional soil mapping, which is primarily based on applying qualitative expert
knowledge, the emerging, ‘predictive’ approach to soil mapping is generally more quantitative
and data-driven and based on the use of statistical methods and technology (Grunwald, 2005a;
Lagacherie et al, 2006; Hartemink et al, 2008; Boettinger et al, 2010). The emergence of new soil
mapping methods is undoubtedly a reflection of new developing technologies and newly available
global data layers, especially those that are free and publicly distributed such as MODIS products,
SRTM DEM and similar (Fig. 1.6). PSM can be compared to, and shares similar concepts with,
other applications of statistics and machine learning in physical geography, for example Predictive
Vegetation Mapping (Franklin, 1995; Hengl et al, 2018b).
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Fig. 1.6 Evolution of digital soil mapping parallels the emergence of new technologies and global, publicly
available data sources.

The objective of using pedometric techniques for soil mapping is to develop and apply objective and
optimal sets of rules to predict the spatial distribution of soil properties and/or soil classes. Most
typically, rules are developed by fitting statistical relationships between digital databases repre-
senting the spatial distribution of selected environmental covariates and observed instances of a soil
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class or soil property at geo-referenced sample locations. The environmental covariate databases
are selected as predictors of the soil attributes on the basis of either expert knowledge of known
relationships to soil patterns or through objective assessment of meaningful correlations with ob-
served soil occurrences. The whole process is amenable to complete automation and documentation
so that it allows for reproducible research (http://en.wikipedia.org/wiki/Reproducibility).

Pedometric soil mapping typically follows six steps as outlined by McBratney et al (2003):

1. Select soil variables (or classes) of interest and suitable measurement techniques (decide what
to map and describe);

2. Prepare a sampling design (select the spatial locations of sampling points and define a sampling
intensity);

3. Collect samples in the field and then estimate values of the target soil variables at unknown
locations to test and refine prediction models;

4. Select and implement the most effective spatial prediction (or extrapolation) models and use
these to generate soil maps;

5. Select the most representative data model and distribution system;

6. Publish and distribute the soil information in the form of maps, geographical databases and
reports (and provide support to users);

Differences among conventional soil mapping and digital soil mapping (or technology-driven or
data-driven mapping) relate primarily to the degree of use of robust statistical methods in devel-
oping prediction models to support the mapping process.

We recognize four classes of advanced soil mapping methods (B, C, D and E in Fig. 1.7) which
all belong to a continuum of digital soil mapping methods (Malone et al, 2016; McBratney et al,
2018). We promote in this book specifically the Class E soil mapping approach i.e. which we refer
to as the predictive and/or automated soil mapping.

http://en.wikipedia.org/wiki/Reproducibility
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Fig. 1.7 A classification of approaches to soil mapping: from purely expert driven (Class A), to various types
of digital soil mapping including fully automated soil mapping (Class E).

Some key advantages of the pedometric (statistical) approach to soil mapping are that it is ob-
jective, systematic, repeatable, updatable and represents an optimal expression of statistically
validated understanding of soil-environmental relationships in terms of the currently available
data.

There are, of course, also limitations with pedometric methods that still require improvement.
Firstly, the number of accurately georeferenced locations of reliable soil observations (particularly
with analytical data) is often not sufficient to completely capture and describe all significant
patterns of soil variation in an area. There may be too few sampled points and the exact location
of available point data may not be well recorded. Thus, data-driven soil mapping is field-data
demanding and collecting field data can require significant expenditures of time, effort and money.

With legacy soil point data the sampling design, or rationale, used to decide where to locate soil
profile observation or sampling points is often not clear and may vary from project to project or
point to point. Therefore there is no guarantee that available point data are actually representative
of the dominant patterns and soil forming conditions in any area. Points may have been selected
and sampled to capture information about unusual conditions or to locate boundaries at points
of transition and maximum confusion about soil properties. Once a soil becomes recognized as
being widely distributed and dominant in the landscape, many conventional field surveys elect
not to record observations when that soil is encountered, preferring to focus instead on recording
unusual or transition soils. Thus the population of available legacy soil point observations may
not be representative of the true population of soils, with some soils being either over or under-
represented.

We define automated or predictive soil mapping as a data-driven approach to soil mapping with
little or no human interaction, commonly based on using optimal (where possible) statistical meth-
ods that elucidate relationships between target soil variables (sampled in the field and geolocated)
and covariate layers, primarily coming from remote sensing data.
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A second key limitation of the automated approach to soil mapping is that there may be no
obvious relationship between observed patterns of soil variation and the available environmental
covariates. This may occur when a soil property of interest does, indeed, strongly covary with
some mappable environmental covariate (e.g. soil clay content with airborne radiometric data)
but data for that environmental covariate are not available for an area. It may also transpire that
the pattern of soil variation is essentially not predictable or related to any known environmental
covariate, available or not. In such cases, only closely spaced, direct field observation and sampling
is capable of detecting the spatial pattern of variation in soils because there is no, or only a very
weak, correlation with available covariates (Kondolf and Piégay, 2003).

1.3.7 Comparison of conventional and pedometric or predictive soil
mapping

There has been a tendency to view conventional soil mapping and automated soil mapping as
competing and non-complementary approaches. In fact, they share more similarities than differ-
ences. Indeed, they can be viewed as end members of a logical continuum. Both rely on applying
the underlying idea that the distribution of soils in the landscape is largely predictable (the deter-
ministic part) and, where it is not predictable, it must be revealed through intensive observation,
sampling and interpolation (the stochastic part).

In most cases, the basis of prediction is to relate the distribution of soils, or soil properties, in
the landscape to observable environmental factors such as topographic position, slope, aspect,
underlying parent material, drainage conditions, patterns of climate, vegetation or land use and
so on. This is done manually and empirically (subjectively) in conventional soil survey, while in
automated soil mapping it is done objectively and mostly in an automated fashion. At the time it
was developed, conventional soil survey lacked both the digital data sets of environmental covari-
ates and the statistical tools required to objectively analyze relationships between observed soil
properties and environmental covariates. So, these relationships were, out of necessity, developed
empirically and expressed conceptually as expert knowledge.

In general, we suggest that next generation soil surveyors will increasingly benefit from having a
solid background in statistics and computer science, especially in Machine Learning and A.I. How-
ever, effective selection and application of appropriate statistical sampling and analysis techniques
can also benefit from consideration of expert knowledge.

1.3.8 Top-down versus bottom-up approaches: subdivision versus
agglomeration

There are two fundamentally different ways to approach the production of soil maps for areas of
larger extent, whether by conventional or pedometric means. For ease of understanding we refer to
these two alternatives here as “bottom-up” versus “top-down”. Rossiter (2003) refers to a synthetic
approach that he calls the “bottom-up” or “name and then group” approach versus an analytic
approach that he calls the “top-down” or “divide and then name” approach.
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The bottom up approach is agglomerative and synthetic. It is implemented by first collecting ob-
servations and making maps at the finest possible resolution and with the greatest possible level
of detail. Once all facts are collected and all possible soils and soil properties, and their respective
patterns of spatial distribution, are recorded, these detailed data are generalized at successively
coarser levels of generalization to detect, analyse and describe broader scale (regional to conti-
nental) patterns and trends. The fine detail synthesized to extract broader patterns leads to the
identification and formulation of generalizations, theories and concepts about how and why soils
organize themselves spatially. The bottom-up approach makes little-to-no-use of generalizations
and theories as tools to aid in the conceptualization and delineation of mapping entities. Rather,
it waits until all the facts are in before making generalizations. The bottom-up approach tends
to be applied by countries and organizations that have sufficient resources (people and finances)
to make detailed field surveys feasible to complete for entire areas of jurisdiction. Soil survey
activities of the US national cooperative soil survey (NCSS) primarily adopt this bottom-up ap-
proach. Other smaller countries with significant resources for field surveys have also adopted this
approach (e.g. Netherlands, Denmark, Cuba). The bottom-up approach was, for example, used in
the development and elaboration of the US Soil Taxonomy system of classification and of the US
SSURGO (1:20,000) and STATSGO (1:250,000) soil maps (Zhong and Xu, 2011).

The top-down approach is synoptic, analytic and divisive. It is implemented by first collecting just
enough observations and data to permit construction of generalizations and theoretical concepts
about how soils arrange themselves in the landscape in response to controlling environmental
variables. Once general theories are developed about how environmental factors influence how soils
arrange themselves spatially, these concepts and theories are tested by using them to predict what
types of soils are likely to occur under similar conditions at previously unvisited sites. The theories
and concepts are adjusted in response to initial application and testing until such time as they
are deemed to be reliable enough to use for production mapping. Production mapping proceeds
in a divisive manner by stratifying areas of interest into successively smaller, and presumably
more homogeneous, areas or regions through application of the concepts and theories to available
environmental data sets. The procedures begin with a synoptic overview of the environmental
conditions that characterize an entire area of interest. These conditions are then interpreted to
impose a hierarchical subdivision of the whole area into smaller, and more homogeneous subareas.
This hierarchical subdivision approach owes its origins to early Russian efforts to explain soil
patterns in terms of the geographical distribution of observed soils and vegetation. The top-down
approach tends to be applied preferentially by countries and agencies that need to produce maps
for very large areas but that lack the people and resources to conduct detailed field programs
everywhere (see e.g. Henderson et al (2004) and Mansuy et al (2014)). Many of these divisive
hierarchical approaches adopt principals and methods associated with the ideas of Ecological
Land Classification (Rowe and Sheard, 1981) (in Canada) or Land Systems Mapping (Gibbons
et al, 1964; Rowan, 1990) (in Australia).

As observed by Rossiter (2003) “neither approach is usually applied in its pure form” and most ap-
proaches to soil mapping use both approaches simultaneously, to varying degrees. Similarly, it can
be argued that PSM provides support for both approaches to soil mapping. PSM implements two
activities that bear similarities to bottom-up mapping. Firstly, PSM uses all available soil profile
data globally as input to initial global predictions at coarser resolutions (“top-down” mapping).
Secondly, PSM is set up to ingest finer resolution maps produced via detailed “bottom-up” map-
ping methods and to merge these more detailed maps with initial, coarser-resolution predictions
(Ramcharan et al, 2018).
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1.4 Sources of soil data for soil mapping

1.4.1 Soil data sources targeted by PSM

PSM aims at integrating and facilitating exchange of global soil data. Most (global) soil mapping
initiatives currently rely on capture and use of legacy soil data. This raises several questions. What
is meant by legacy soil data? What kinds of legacy soil data exist? What are the advantages and
limitations of the main kinds of legacy soil data?

In its most general sense, a legacy is something of value bequeathed from one generation to the
next. It can be said that global soil legacy data consists of the sum of soil data and knowledge
accumulated since the first soil investigations 100 or more years ago (Arrouays et al, 2017). More
specifically, the concept of a legacy is usually accompanied by an understanding that there is
an obligation and duty of the recipient generation to not simply protect the legacy but to make
positive and constructive use of it.

Four main groups of legacy data of interest for global soil mapping are: (1) soil field records,
(2) soil polygon maps and legends, (3) soil-landscape diagrams and sketches, (4) soil (profile)
photographs.

In the context of soils, legacy soil data consist of the sum total of data, information and knowledge
about soils accumulated since soils were first studied as independent natural objects. At its broad-
est, this includes information about soil characteristics and classification, soil use and management,
soil fertility, soil bio-chemistry, soil formation, soil geography and many other sub-disciplines.

In the more focused context of PSM, we are primarily interested in four main kinds of legacy soil
data:

• Soil field observations and measurements — Observations and analytical data obtained for
soils at point locations represent a primary type of legacy soil data. These point source data
provide objective evidence of observed soil characteristics at known locations that can be used
to develop knowledge and rules about how soils, or individual soil properties, vary across the
landscape. The quality and precision of these data can vary greatly. Some data points might
be accurately located, or geo-referenced, while others might have very coarse geo-referencing
(for example coordinates rounded in decimal minutes or kilometers). Some point data might
only have a rough indication of the location obtained from a report (for example ‘2 km south
of village A’), or might even lack geo-referencing. Soil profile descriptions can be obtained from
pits (relatively accurate) or auger bores (less accurate). Soil attributes can be determined in
the laboratory (relatively accurate) or by hand-estimation in the field (less accurate). Legacy
point data is characterized by great variation in precision, accuracy, completeness, relevance
and age. It needs to be used with caution and with understanding of how these issues affect its
potential use.

• Soil (polygon) maps and legends — Soil maps and legends are one of the primary means by
which information and knowledge about how soils vary spatially have been observed, distilled,
recorded and presented to users. Soil maps provide lists, or inventories, of soils that occur in
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mapped regions, illustrate the dominant spatial patterns displayed by these listed soils and
provide information to characterize the main properties of these soils. Soil maps can themselves
be used as sources of evidence to develop knowledge and quantitative rules about how soils, or
individual soil properties, vary across the landscape. On the other hand, similar to soil observa-
tions, soil maps can also exhibit significant errors with respect to measurement, classification,
generalization, interpretation and spatial interpolation.

• Tacit expert soil knowledge — In the context of soils, tacit expert knowledge represents a diffuse
domain of information about the characteristics and spatial distribution of soils that has not
been captured and recorded formally or explicitly. It may reside in the minds and memories of
experts who have conducted field and laboratory studies but have been unable to record all their
observations in a formal way. It may be captured informally and partially in maps, legends,
conceptual diagrams, block diagrams, generalized decision rules and so on. Tacit knowledge
represents soft data, in comparison to the more hard data of point observations and maps.

• Photographs — Traditional soil survey is heavily based on use of aerial photographs. Older
aerial photographs (even if not stereoscopic) are an important resource for land degradation
monitoring and vegetation succession studies. Field photographs of soil profiles, soil sites and
soil processes are another important source of information that has been under-used for soil
mapping. ISRIC for example has an archive of over 30 thousand photographs from various con-
tinents. Most of these can be geo-coded and distributed via image sharing web-services such as
WikiMedia, Instagram and/or Flickr. In theory, even a single photograph of a soil profile could
be used to (automatically?) identify soil types, even extract analytical soil properties. Although
it is very likely that prediction by using photographs-only would be fairly imprecise, such data
could potentially help fill large gaps for areas where there are simply no soil observations.

1.4.2 Field observations of soil properties

Perhaps the most significant, but certainly the most reliable, inputs to soil mapping are the
field observations (usually at point locations) of descriptive and analytical soil properties (Soil
survey Division staff, 1993; Schoeneberger et al, 1998). This is the hard data or ground truth in
soil mapping (Rossiter, 2003). Field observations are also the main input to spatial prediction
modelling and the basis for assessment of mapping accuracy. Other synthetically or empirically
generated estimates of values of target variables in the field are considered as soft data (data based
on qualitative information or quick observations). Soft data are less desirable as the primary input
to model estimation, but sometimes there is no alternative. It is in any case important to recognize
differences between hard and soft data and to suggest ways to access the uncertainty of models
that are based on either or both.

The object of observation and description of a soil is almost always a soil profile or pedon. Officially,
a soil pedon is defined as a body of soil having a limited horizontal extent of no more than 1–
2 m in horizontal and a vertical dimension (𝑑) that typically extends to only 1–2 m but may
occasionally extend to greater depths. In practice, the vast majority of soil profile data pertain to
soil observations and samples collected over very limited horizontal dimensions (10–50 cm) and
down to maximum depths of 1–2 m.
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In geostatistical terms, soil observations are most commonly collected at point support, meaning
that they are representative of a point in space with very limited horizontal extent. It is relatively
rare to encounter legacy soil profile data collected over larger horizontal extents and bulked to
create a sample representative of a larger volume of soil that can be treated as providing block
support for statistical purposes. On the other hand, there is an increasing interest in soil predictions
at varying support sizes e.g. 1 ha for which composite sampling can be used.

In the vertical dimension, soil profiles are usually described and sampled with respect to genetic
soil horizons, which are identifiable layers in the soil that reflect differences in soil development
or depositional environments. Less frequently, soils are described and sampled in the vertical
dimension with respect to arbitrary depth intervals or layers e.g. at fixed depths intervals e.g. 10,
20, 30, 40, … cm.

A soil profile record is a set of field observations of the soil at a location — a collection of descriptive
and analytical soil properties attached to a specific location, depth and sampling support size
(volume of soil body).

Soil profile descriptions in the vertical dimension are usually accompanied by additional soil site
descriptions that describe attributes of the site in the horizontal dimension for distances of a few
meters up to 10 m surrounding the location where the vertical profile was sampled and described.
Site attributes described typically characterize the immediately surrounding landscape, including
slope gradient, aspect, slope position, surface shape, drainage condition, land use, vegetation cover,
stoniness and unusual or site specific features.

Two main types of information are typically recorded for point soil profiles. The first consists
of field observations and classifications of observable profile and site characteristics. Profile at-
tributes usually include the location and thickness of observably different horizons or layers, the
color, texture, structure and consistence of each recognized horizon or layer and other observable
attributes such as stone content, presence, size and abundance of roots, pores, mottles, cracks and
so on. Despite their potential for subjectivity, these field observations provide much useful infor-
mation at a relatively low cost, since there is no need to sample or transport the soil or analyze it
at considerable cost in a distant laboratory.

The second main type of information collected to describe soil profiles consists of various types of
objective measurements and analyses. Some objective measurements can be taken on-site, in the
field. Examples of field measurements include in-situ assessment of bulk density, infiltration rate,
hydraulic conductivity, electrical conductivity, penetration resistance and, more recently, spectral
analysis of soil reflectance (Kondolf and Piégay, 2003; Gehl and Rice, 2007; Shepherd and Walsh,
2007). The most frequently obtained and reported objective measurements are obtained by off-site
laboratory analysis of soil samples collected from soil profiles at sampled locations. A wide variety
of chemical and physical laboratory analyses can be, and have been, carried out on soil samples
included in legacy soil profile data bases.

Within PSM we are mainly interested in a core set of laboratory analyses for e.g. pH, organic
carbon, sand, silt, clay and coarse fragment content, bulk density, available water capacity, ex-
changeable cations and acidity and electrical conductivity. This core set was selected partly be-
cause it is considered to represent the key soil functional properties of most interest and use for
interpretation and analysis and partly because these soil properties are the most widely analyzed
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and reported in the soil legacy literature (Sanchez et al., 2009; Hartemink et al, 2010). The sig-
nificant feature of objective measurements is that they are expected to be consistent, repeatable
and comparable across time and space. We will see in the following chapter that this is not always
the case.

An advantage of descriptive field observations — such as soil color, stone content, presence, size
and abundance of roots, pores, mottles, cracks, diagnostic horizons etc — is that they provide
much useful information at a relatively low cost, since there is no need to sample or transport the
soil or analyze it at considerable cost in a distant laboratory.

1.4.3 Legacy soil profile data

The principal advantage of legacy soil profile data at point locations is simply that the observations
and measurements are referenced to a known location in space (and usually also time). Knowledge
of the spatial location of soil profile data provides the opportunity to analyze relationships between
known data values at a location and other covariate (predictor) data sets. It also becomes possible
to simply analyze spatial patterns i.e. represent spatial variability using values at known point
locations. In the first instance, knowing the location of a point at which a soil property has been
described or measured permits that location to be overlaid onto other spatially referenced digital
data layers to produce data sets of related environmental values that all occur at the same site.

The known point values of soil properties (or classes) can be analyzed relative to the known values
of environmental covariates at corresponding locations. If a statistically significant relationship
can be established between the value of a soil property at numerous locations and the corre-
sponding values of a environmental variables at the same locations, a predictive model can be
developed. Development of predictive models based on such observed environmental correlations
is a fundamental aspect of modern pedometric soil mapping.

A second main advantage of point profile data is that the data values are, more or less, objective
assessments of a soil property or characteristic at a location. Objective values are more amenable
to exploration using statistical techniques than subjective observations and classifications. They
typically (but not always) exhibit less measurement error.

As important and useful as soil point data are, they also possess limitations and problems that
must be recognized and addressed. One common limitation of legacy soil point data is the lack of
accurate geo-referencing information. The location information provided for older soil legacy profile
data is often poor. Prior to the widespread adoption of the Global Positioning Systems (GPS) the
locations of most soil sampling points were obtained and described in terms of estimated distances
and directions from some known local reference point (Fig. 1.8). Even the best located of such
older (prior to 1990’s) sampling points cannot be expected to be located with an accuracy of
better than 50–100 m. Some widely used profile data from developing countries cannot be reliably
located to within 1 km (Leenaars, 2014).
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Fig. 1.8 Evolution of the Open Access Navigation and positioning technologies (left) and the open access
remote sensing monitoring systems (right). API — Aerial photo-interpretation; S.A. — Selective Availability;
L.R.S.P.A. — Land Remote Sensing Policy Act (made Landsat digital data and images available at the lowest
possible cost).

This relatively poor positional accuracy has implications when intersecting legacy point data
with covariate data layers to discover and quantify statistical relationships. It can be difficult to
impossible to develop meaningful relationships between soil properties at point locations and envi-
ronmental covariates that vary significantly over short horizontal distances. Consider, for example,
topography, in which the largest portion of significant variation is often local and is related to
individual hill slopes from ridge line to channel. Many hill slopes, especially in agricultural land-
scapes, have total lengths of from 50–100 m. If the location of a point soil profile is only known
with an accuracy of 100 m, then, when overlaid on topographic data, that point may fall at almost
any point on a typical hill slope from channel bottom to ridge top.

In such cases, it is unlikely that statistical analysis of the relationship between soil properties
and slope position will reveal anything meaningful. Even if a strong relationship does exist in
reality, it will not be apparent in the poorly geo-referenced data. The likelihood of establishing
a meaningful relationship becomes even smaller when the accuracy of the point location is ±1
km. In such cases, subjective information on the conceptual location of the soil in the landscape
(e.g. manually observed slope position) may be more useful for establishing rules and patterns
than intersection of the actual point data with fine resolution covariates.

In the case of automated soil mapping, efforts are usually made to try to harmonize values produced
using different laboratory methods to achieve roughly equivalent values relative to a single standard
reference method. Even where harmonization is applied, some noise and inconsistency always
remains and the ability to establish statistical relationships is often somewhat compromised.
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If not collected using probability sampling and with high location accuracy, soil field records are
often only marginally suitable for building spatial prediction models, especially at fine spatial
resolution. Legacy data can carry significant positional and attribute error, and is possibly not
representative of all soil forming conditions in an area of interest. All these limitations can seriously
degrade the final map accuracy, so that sometimes better accuracy cannot be achieved without
collecting new field data.

What needs to be emphasized is that much of the legacy soils profile data in the world is under
used. It tends to be fragmented, non-standard between countries and often even within countries.
Many original field observations are still not converted into digital format and these data are
in considerable danger of being lost to effective use forever (!) as government sponsored soil
institutions lose support and close and the current generation of experienced soil specialists retire
and are not replaced. Even where these data are in digital format, it is not easy to share or
exchange data across national, state or even project borders because of significant differences in
standards, methods, definitions, ownership and legends (Omuto et al, 2012).

1.4.4 Soil covariates

Following the work of Jenny (White, 2009) and further McBratney et al (2011), we recognize six
main groups of soil covariates of interest for pedometric soil mapping:

1. Raw spectral and multi-spectral images of the land surface (remote sensing bands),

2. DEM-derived covariates,

3. Climatic images,

4. Vegetation and land-cover based covariates,

5. Land survey and land use information — human-made objects, management, fertilization and
tillage practice maps etc,

6. Expert-based covariates — soil delineations or delineations of soil parent material or geol-
ogy (manually or semi-automatically prepared); empirical maps of soil processes and features
(e.g. catena sequences etc).
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Fig. 1.9 Evolution of global DEM data sources: (right) SRTM DEM at 100 m released in 2002, as compared
to (left) WorldDEM at 12 m released in 2014 (Baade et al., 2014). Sample data set for city of Quorn in South
Australia. As with many digital technologies, the level of detail and accuracy of GIS and remote sensing data is
exhibiting exponential growth.

The most common environmental covariates typically used in soil mapping are: (1) Raw spec-
tral and multi-spectral images of the land surface, (2) DEM-derivatives, (3) Climatic maps, (4)
Vegetation and land-cover based covariates, (5) Land survey and land use information, and (6)
Expert-based covariates e.g. soil or surficial geology maps.

Different environmental covariates will be the dominant spatial predictors of targeted soil prop-
erties and this relationship is often scale dependent. Often, only a few key covariates can explain
over 50% of the fitted model, but these are unknown until we fit the actual models. The only way
to ensure that the most relevant environmental covariates are included in the modelling process
is to start with the most extensive list of all possible environmental covariates, then subset and
prioritize.

1.4.5 Soil delineations

Soil delineations are manually drawn entities — soil mapping units — that portray boundaries
between soil bodies. Soil polygons are usually assumed to differ across boundaries and to be rel-
atively homogeneous within boundaries, but other criteria are sometimes used (Simonson, 1968;
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Schelling, 1970). They are commonly generated through photo-interpretation i.e. stereoscopic in-
terpretation of aerial photographs of the area of interest (Fig. 1.10). Soil delineations based on
expert knowledge about an area are the main output of conventional soil mapping. If available
imagery is of high detail (scales >1:25k), and if the soil surveyor has developed an extensive knowl-
edge of the soil—land-use—topography relations in an area, soil delineations can produce useful
and relatively accurate maps of soil bodies and are, in a way, irreplaceable (Soil Survey Staff,
1983). However, in many parts of the world, soil delineations have been produced using relatively
weak source materials and these can be of variable accuracy.

 

 

Fig. 1.10 In conventional soil mapping, soil delineations are usually manually drawn polygons representing
(assumed) bodies of homogenous soil materials (often geomorphological units). These are first validated in the
field before a final area-class map is produced, which can then be generalized and used to extract soil property
maps. After USDA Soil Survey Manual.

In PSM terms, soil map delineations can be considered to be expert-based covariates. They can be
used as input to spatial prediction in the same way as DEM-derived predictors or remote sensing
indices. This is assuming that a standardized legend is attached to the soil polygon map systemat-
ically describing types of polygons ( e.g. soil-geomorphological units). Soil delineations, in combi-
nation with other auxiliary predictors, can generate soil property maps that exhibit both abrupt
and smooth transitions in values. An analyst can objectively assess the utility and importance of
hybrid covariates and then try to obtain optimal covariates that can be clearly demonstrated to
be significant predictors. In practice, expert-based predictors can sometimes perform better than
alternatives such as DEM-derived predictors or remote sensing indices. “Perform better” in this
case indicates that the predictors will be more distinctly correlated with target soil properties. In
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all applications of PSM methods, it is advisable to obtain and assess the utility of available soil
polygon maps.

Most legacy polygon soil maps represent a distillation and summary of expert knowledge about
the main spatial patterns of variation in soil types (classes) within an area. This knowledge has
been abstracted and generalized in order to convey dominant patterns at specific scales. Thus, it
is often not reasonable to expect to be able to go to a specific point portrayed on a soil map and
find a single specific soil class or soil property value (see Fig. 1.4). Most often, soil maps provide
lists or inventories of soil classes that occur within a given map area and give outlines of areas
(polygons) within which lists of specific soils are predicted to occur with specified frequencies or
possibilities. Soils are conceptualized as objects that belong to defined soil classes.

Soil delineations are manually drawn entities that portray boundaries between soil bodies as-
sumed to be internally homogeneous. Soil delineations can be considered to be expert-based soil
covariates.

Each class of soil (often a soil series or taxonomic class) is assumed to have a limited and describ-
able range of characteristics i.e. physical and chemical properties that can be used to characterize
it. Within mapped polygons, the manner in which soils vary horizontally across the landscape
is usually not explicitly portrayed (Fig. 1.4). At best, such internal polygon variation may be
described in conceptual terms relative to how different soils may be more likely to occupy specific
landscape positions or occur on specific parent materials or under different drainage conditions. For
example the USDA’s Soil Survey Manual distinguishes between consociations (relatively homoge-
neous polypedons), associations (heterogeneous unit with two or more similar polypedons), and
complexes (mix of two or more contrasting polypedons), but in most cases none of the described
components is actually mapped separately.

Variation of soil properties in the vertical dimension is usually described in terms of variation in
the type, thickness and arrangement of various different soil horizons. Soil horizons are themselves
a collection of class objects, with each class also expected to display a characteristic range of
attributes and soil property values. All soils do not always have the same types or sequences of
horizons and so, most horizons are not laterally continuous and mappable. So, most legacy soil
maps portray abstract representations of how various classes of soils vary horizontally between
soil polygons and vertically by soil horizons.

Interpretation of most maps of soil classes often requires a considerable amount of knowledge
and understanding of both underlying soil mapping concepts and of local classes of soils and soil
horizons. This restricts effective use of many soils maps to persons with the necessary background
knowledge.

1.4.6 Advantages and disadvantages of using soil delineations

One of the key advantages of conventional soil polygon map data is its availability. In many parts
of the world, the number of instances of reliably located soil profile observations is quite low and
the spatial extent of areas for which sufficient point data are available can be small (Hartemink,
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2008). However, many areas with only limited amounts of geo–referenced point data are covered
by soil maps of various types and scales. So, conventional soil polygon maps are often available
for areas that lack sufficient amounts of soil point data.

For most of the last 80–100 years, conventional polygonal (area-class) soil maps have been seen
as the most effective way to convey information about horizontal and vertical variation in soils
and soil properties across the landscape (Wysocki et al, 2005). Conventional soil maps do manage
to achieve some partitioning of the total amount of variation in soils and soil properties in the
horizontal dimension. Soil maps have always acknowledged that they are unable to capture and
explicitly portray variation that occurs at distances shorter than some minimum sized area that
is feasible to display at any particular scale of mapping.

Since soil types and soil properties can exhibit a significant amount of variation over rather short
distances, there is always a relatively large amount of total variation in soils and soil properties
that is not explicitly captured or described by polygonal soil maps. For some highly variable soil
properties, as much as 40–60% of the total variation in that soil property within a mapped area
can occur over distances of meters to tens of meters. This means that most soil maps cannot
explicitly display this portion of the variation and can only try to portray the remaining portion
of the variation (60–40%) that occurs over longer distances (Heuvelink and Webster, 2001). Much
of this longer range variation is often related to observable and mappable physical or landscape
features such as slope gradient, slope position, landform elements, definable bodies of different
surficial geological materials, readily apparent differences in moisture or drainage conditions or
observable changes in soil color, accumulation of surface salts or visible erosion.

Soil surveyors make use of these correlations to manually delineate soil polygon boundaries that
outline areas that display different soil assemblages in response to observable differences in land-
scape or environmental conditions. These manually drawn polygon boundaries can, and do, provide
much useful information about variation in readily observable soil and landscape attributes. So,
soil maps are often one of the best sources of information on local variation in surficial geological
materials, because soil surveyors have observed, recorded and mapped this variation in delineating
their polygons.

Likewise, soil maps are often able to be quite successful in outlining areas of significantly different
moisture or drainage conditions, climate or vegetation related conditions, depth to bedrock, slope
or slope position, salinity or calcareousness. Where they exist, conventional soil polygon maps can
act as one of the most effective sources of covariate information describing medium to long range
variation in key environmental factors such as parent material, drainage, climate, vegetation and
topography.

In terms of automated soil mapping, one of the key advantages of conventional soil maps is that
they provide a useful initial indication of the main soils that are likely to be encountered within
any given area (map sheet or individual polygon). This listing limits the number of soils that
need to be considered as possible or likely to occur at any point or within any area to a much
smaller and more manageable number than a full list of all possible soils in a region. Most soil
maps provide a hierarchical stratification of an area into smaller areas of increasing homogeneity
and more limited soil and environmental conditions.

Many soil maps, or their accompanying reports, also provide some indication about how named
soils within polygons or map units vary spatially, within the polygon, in response to changes in
slope, landform position, parent material, drainage and so on (Soil survey Division staff, 1993;
Wysocki et al, 2005). This information on which soils are most likely to occur within a given geo-
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graphic area and under what environmental conditions (slope position, drainage, parent material)
each listed soil is most likely to occur, can provide a foundation for heuristic (or expert-based)
modeling of the more detailed and shorter range variation in soil types that lies at the heart of
DSM methods of soil polygon disaggregation. Disaggregation of conventional soil polygon maps
into more detailed representations of the most likely finer scale spatial pattern of variation of the
named component soils is an attractive and feasible method of producing more detailed estimates
of the spatial distribution of soils and soil properties for many areas for which point data are
scarce and conventional soil polygon maps are available (Fig. 1.4).

The list of limitations and potential problems with using conventional soil polygon map data is
long and must be acknowledged and dealt with. Two of the most serious issues are completeness
and consistency. It is extremely rare to have entire regions or countries for which there is complete
coverage with a consistent set of soil polygon maps of consistent scale, content and vintage. In fact,
the normal situation for most regions and countries is one of incomplete coverage with patches
of maps of different scale, content, design and vintage covering portions of areas of interest with
large gaps of unmapped areas between mapped areas.

Conventional soil polygon maps (manually-drawn delineations) are often one of the best sources
of information on local variation in soil polypedons. On the other hand, conventional soil polygon
maps often suffer from incompleteness, inconsistency and low accuracy of thematic content, as
well as from suspect positional accuracy.

Only a few countries or regions (e.g. USA, UK, Japan, western European countries, Jamaica,
Gambia etc) have achieved anywhere near complete national coverage at scales more detailed
than 1:50,000 (Rossiter, 2004; Hartemink, 2008). Most smaller scale (1:1M or smaller) national
or continental soil maps are based on manual interpolation and extrapolation of scattered and
incomplete maps that provide only partial coverage for these mapped areas. Even where coverage
is complete, or nearly complete, consistency is often a significant issue.

Mapping concepts change across time and vary among different mappers and agencies. Conse-
quently, the normal situation is that no two maps are entirely comparable and many collections
of maps exhibit very marked and significant differences in what has been mapped and described,
the concepts and legends used to map and describe, the classification rules and taxonomies, and
the scale and level of detail of mapping. Joining maps of different scales, vintages and legend con-
cepts into consistent compilations that cover large regions is challenging and not always entirely
successful.

Even in the USA, where a single set of mapping guidelines and specifications is ostensibly in place
for national mapping programs, there are readily apparent differences in the concepts used to
produce maps in different areas and visible differences in the naming and description of dominant
mapped soils on the same landforms and landform positions in adjoining map sheets (Lathrop Jr.
et al, 1995; Zhong and Xu, 2011).

For conventional soil polygon maps to be of maximum utility for automated soil mapping, they
really benefit from being compiled and harmonized into regional maps that have a common legend,
common scale, common list of described landform and soil attributes and consistent application
of terminologies and methods. There have been some successes in developing and demonstrating
methods for compiling harmonized soil polygon maps at regional to continental scales from scat-
tered and disparate collections of available soil polygon maps (Bui, 2003; Grinand et al, 2008)
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but these methods have not yet been formalized or widely adopted for global use. If soil polygon
maps are not harmonized to produce complete and consistent regional to national coverages, then
each map needs to be treated as a separate entity which complicates use of soil maps to build
consistent rules for predicting soils or soil properties across large areas.

1.4.7 Accuracy of conventional soil polygon maps

The spatial accuracy of conventional soil polygon maps is also a frequent concern. Most legacy soil
maps were prepared before the advent of ortho-rectified digital base maps and GPS. Many legacy
maps exist only on non-stable media (e.g. paper), are of unknown or uncertain projection and
datum and were compiled onto uncontrolled base maps, usually in paper format. Even though the
boundaries of soil polygons are generally subjective and fuzzy, the correct location of many polygon
boundaries on legacy soil maps is compromised by problems related to unknown or unstable geo-
referencing. It is very common to encounter highly obvious discrepancies between the observed
location of soil polygon boundaries on newly digitized soil polygon maps and the obviously intended
location of those same boundaries. For example, polygon boundaries clearly intended to delineate
drainage channels, are often displaced relative to the channels or cut back and forth across the
channels.

Similarly, boundaries intended to delineate an obvious break in slope are often strongly displaced
relative to the actual location of the slope break in correct geographic space. The mismatch between
observed geographic features and soil polygon map boundary locations is often compounded when
boundaries delineated by hand at a coarse resolution are overlain onto, and compared to, landscape
features observable at finer resolution on newer digital base maps and digital elevation models.

The displacements in boundary locations and level of generalization can be disturbing and reduce
confidence in the accuracy of the polygon soil map, even when the original polygon boundaries
were significant and reflected legitimate changes in soil properties at locations of likely change
in soils. There are also numerous instances where boundaries on conventional soil polygons maps
do not define locations of significant real change in soils or soil properties and simply reflect an
arbitrary subdivision of the landscape.

Several soil survey cross-validation studies (Marsman and de Gruijter, 1986; Hengl and Husnjak,
2006) have shown that traditional polygon-based maps can be of limited accuracy and usability.
First, they are created using irreproducible methods and hence difficult to update. Second, at
broader scales, polygon maps produced by different teams are often incompatible and can not
be merged without harmonization. A non-soil scientist introduced to a continental-scale soil map
where soil boundaries follow country boundaries will potentially lose confidence and look for
another source of information (D’Avello and McLeese, 1998). Consider for example the Harmonized
World Soil Database product. On the HWSD-derived maps one can still notice numerous soil
borders that match country borders (most often an artifact), but also inconsistent effective scale
within continents. All these limitations reduce confidence in the final product and its usage.
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For legacy soil maps to be of maximum possible utility for digital soil mapping they need to be
harmonized with respect to thematic content and accuracy, and they need to be corrected with
respect to positional accuracy.

So, conventional soil polygon maps suffer from issues related to completeness, consistency and
accuracy of thematic content as well as from issues related to positional accuracy and relevance of
soil polygon boundaries. If these issues are not dealt with, and corrections are not implemented,
the likelihood of extracting meaningful and consistent patterns and rules for use in soil mapping
is considerably compromised.

1.4.8 Legacy soil expertise (tacit knowledge)

The dominant characteristic of most legacy soil expert knowledge is that it has often not been
formalized or made explicit and systematic. Hudson (2004) refers to the vast amount of soils knowl-
edge that exists in tacit form, as “unstated and unformalized rules and understanding that exists
mainly in the minds and memories of the individuals who conducted field studies and mapping”.
Soil maps are one mechanism by which experts try to capture and portray their understanding of
how and why soils vary across the landscape (Bui, 2004). Other methods include:

• 2D cross sections,

• random catenas (McBratney et al, 2006),

• 3D block diagrams,

• decision trees or rules,

• mapping keys and textual descriptions of where, how and why soils have been observed to vary
in particular areas or under particular conditions.

All of these methods are imperfect and all leave some portion of expert knowledge un-expressed
and uncaptured. Modern methods of digital soil mapping often represent attempts to capture
expert knowledge in a systematic and formal way (Zhu et al, 2001; McBratney et al, 2003; Bui,
2004; MacMillan et al, 2005).

Integration of expert pedological knowledge into soil mapping methods provides the opportunity
of potentially improving both the predictions themselves and understanding of the reasons or
rationale for the success (or failure) of predictions (Walter et al, 2006; Lagacherie, 1995, 2001).
There is increasing realization of the benefits of incorporating both hard and soft knowledge into
prediction and decision making procedures (Christakos et al, 2001). Soft knowledge can help to
smooth out or generalize patterns that are incompletely represented by hard data or that are noisy
when assessed using hard data. A definite advantage of expert tacit knowledge is that a significant
amount of it exists. Conceptual understanding of where, how and why soils and soil properties
vary across landscapes is relatively widespread, if not always well documented or expressed.

In the absence of any hard data, in the form of point profile observations or even soil polygon
maps, expert knowledge of the main patterns of variation in soils can represent the only feasible
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way of producing a first approximation model of soil spatial variation for an area. There will be
vast tracts of the world for which both soil point data and soil maps will be lacking (e.g. remote
portions of Russia and northern Canada) but for which there is considerable expert knowledge of
the main kinds of soils, their properties and the patterns in which they vary across the landscape,
at least at a conceptual level. It may be possible to capture and apply this expert tacit knowledge
in such as way as to permit creation of initial prediction rules that can subsequently be modified
and improved upon.

As with much legacy soils data, one of the main limitations of legacy soil tacit knowledge is — its
accessibility. By definition, tacit knowledge has not been formalized and has often not even been
written down. So, a challenge exists to simply locate legacy soil expert knowledge. Once located, a
second challenge is how to best capture and formalize it i.e. how to turn it into rules for a mapping
algorithm.

The first challenge to using legacy soil expert knowledge is to locate it. Once located, a second
challenge is how to best capture and formalize it i.e. how to turn it into rules for a mapping
algorithm.

Common approaches to codifying expert knowledge about soil-landscape patterns include con-
struction of decision trees (Walter et al, 2006; Zhou et al, 2004), fuzzy logic rule bases (Zhu et al,
2001) or Bayesian maximum likelihood equations (Zhou et al, 2004). A less sophisticated, but more
generalized, approach is to apply general conceptual understanding of soil-landscape relationships
to existing databases of soils and landform data to automatically associate named soil classes with
conceptual landform positions (MacMillan et al, 2005). Expert tacit knowledge is often inexact
and incomplete but it can express and reveal widely recognized general patterns and can provide
a reasonable first approximation of soil-landscape patterns. In order to be used effectively, for
activities such as PSM, platforms and procedures need to be agreed upon, and put in place, to
support knowledge capture and application. Agreement on such platforms and procedures is not
yet widespread.

To integrate all available tacit knowledge systems into a one, all encompassing, prediction algo-
rithm is probably beyond human capacities, but it could well be assisted using e.g. web crawling
applications for legacy soils data i.e. by scanning documents, soil survey reports and books and
then extracting rules and procedures using automated methods. Alternately, different methods,
using different types of expert knowledge, could be implemented regionally to locally and the
resulting maps merged using harmonization procedures.

1.4.9 Pseudo-observations

When applying Statistical or Machine Learning methods to larger (global to continental) sized
areas, one thing that often limits the success of predictions is the existence of vast areas with ex-
treme climatic conditions and/or very restricted access, that are consequently significantly under-
sampled. This occurs largely in the following five types of areas (Hengl et al, 2017a):

1. Semi-arid and arid lands, deserts and sand dunes,
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2. Mountain tops, steep slopes of mountains and similar inaccessible areas,

3. Areas covered by ice and/or snow, i.e. glaciers,

4. Inaccessible tropical forest,

5. Areas governed by totalitarian and hostile regimes, with military conflicts or war.

It might seem obvious to soil surveyors that there is no soil organic carbon on the top of the active
sand dunes in the Sahara, but any model fitted without observations from the Sahara could result
in dubious extrapolation and questionable predictions. In addition, relationships across transitional
areas — from semi-arid zones to deserts — can be difficult to represent without enough points
at both edges of the feature space. Some sand dunes in the USA have fortunately been sampled
and analyzed in the laboratory. For example, Lei (1998) has shown that sand dunes in the Mojave
desert have an average pH of 8.1. Again, although it might seem obvious that deserts consist
mainly of sand, and that steep slopes without vegetation are either very shallow or show bedrock
at the surface, prediction models may not be aware of such expert knowledge and hence such
unsampled features need to be ‘numerically represented’ in the calibration data set.

Instead of masking out all such areas from soil mapping, one can alternatively generate a number
of pseudo-observations to fill sampling gaps in the feature space. Pseudo-observations can be
generated by photo-interpretation of high resolution imagery or by using very detailed land cover,
soil or similar maps. Hengl et al (2017a) use the following data sources to delineate sand dunes,
bare rock and glaciers:

• Mean annual long-term surface temperature generated from the MODIS LST data product
(MOD11A2), long-term MODIS Mid-Infrared (MIR) band (MCD43A4) and slope map can be
used to delineate sand dunes mask.

• The MODIS MIR band (MCD43A4) and a slope map can be used to delineate bare rock areas.
Bare rock or dominantly rocky areas show high MIR surface reflectance and are associated with
steep slopes.

• Global distribution of glaciers i.e. the GLIMS Geospatial Glacier Database (Raup et al, 2007)
can be used to delineate glaciers and permafrost.

For each of these three masks Hengl et al (2017a) generated randomly 100–400 points based on
their relative global extent, and assigned soil properties and soil classes accordingly (e.g. in the
case of WRB’s Protic Arenosols for sand dunes, Lithic and Rendzic Leptosols for bare rock areas,
Cryosols for areas adjacent to glaciers; in the case of USDA’s Psamments for sand dunes, Orthents
for bare rock areas and Turbels for glaciers; for sand dunes they also inserted estimated values of
0 for soil organic carbon, sand and coarse fragments).

When inserting pseudo-observations one should try to follow some basic rules (to minimize any
negative effects):

• keep the relative percentage of pseudo-points small i.e. try not to exceed 1–5% of the total
number of training points,

• only insert pseudo-points for which the actual ground value is known with high confidence,
e.g. sand content in sand dune areas,
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• if polygon maps are used to insert pseudo-observations, try to use the most detailed soil polygon
maps and focus on polygons with the highest thematic purity.

Pseudo-observations are not an optimal solution to gaps in representation of landscape features,
but are often necessary if one plans to apply complex non-linear models for PSM purposes.

1.5 Soil databases and soil information systems

1.5.1 Soil databases

To facilitate usage of soil data, soil field records and soil delineations can be digitized and orga-
nized into databases. Soil profiles are commonly put into a Soil–Profile (geographical) Database
(SPDB); soil delineations are digitized and represented as polygon maps with attributes attached
via mapping units and soil classes (Rossiter, 2004). Soil profile databases and soil polygon maps
can be combined to produce attribute maps of soil properties and classes to answer soil or soil–land
use specific questions. Once the data are in a database, one can generate maps and statistical plots
by running spatial queries (Beaudette and O’Geen, 2009).

A common database model used for SPDB is one where soil site, soil horizon data and metadata
are split into separate tables (Fig. 1.11a; here referred to as the horizon-site or layer-site database
model. Note that soil surveyors typically like to include in the database also metadata that describe
column names and classes for factor type variables, because these are often area/project specific
and need to be attached to the original soil data. Many variations on this horizon-site database
model exist, so that each new user of SPDB typically requires some initial training to understand
where soil variables of interest are located and how they can be exported and visualized.
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Fig. 1.11 An example of a basic soil profile geographical database, which commonly consists of four tables:
SITE, HORIZON, DESCRIPTION and NAMES tables (a). To facilitate rapid display and use of soil variables,
SITE and HORIZON tables can be combined into a single (wide) table structure (b).

Any horizon-site database model can be converted to a single table where each soil profile becomes
one record (Fig. 1.11b). The single-table database model simplifies subsequent efforts to visualize
sampled values and to import them to a platform to run spatial analysis. Note also that conver-
sion from one data model to the other in software for statistical computing is relatively easy to
accomplish.

1.5.2 A Soil Information System

A Soil Information System (SIS) consists of a combination of input soil data (soil profiles, soil
polygon maps, soil covariates), output predictions (soil properties and classes) and software to
browse these data. A SIS is basically a thematic GIS focused on soil resources and offering the
best possible soil information at some given scale(s). A SIS is often the end product of a soil
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survey. In the ideal case, it should meet some common predefined soil survey specifications, for
example:

• It corresponds to a specified soil survey scale.

• It provides spatial information about a list of targeted soil variables which can be used directly
for spatial planning and environmental modelling.

• It provides enough meta-information to allow use by a non-soil science specialist.

• It has been cross-checked and validated by an independent assessment.

• It follows national and/or international data standards.

• It has a defined information usage and access policy.

Many soil data production agencies are often unclear about where the work of a soil surveyor
stops. Is a SPDB and a soil polygon map an intermediate product or can it be delivered as a soil
information system? Does a SIS need to already hold all predictions or only inputs to prediction
models? In this book we will adhere to a strict definition of a SIS as a complete and standardized
geographical information system that contains both initial inputs and final outputs of spatial
predictions of soil variables, and which is fully documented and ready to be used for spatial
planning. The PSM tools described in this book, in that context, have been designed as a step
forward to producing more complete soil information systems.

A Soil Information System is an end product of soil mapping — a standardized collection of
(usually gridded) soil property and class maps of an area that can be used for spatial planning,
environmental modelling, agricultural engineering, land degradation studies, biodiversity assess-
ment and similar. A SIS tries to provide the best possible soil information at some given scale for
the spatial domain of interest.

Another important point is that a modern SIS needs to be user-oriented. As Campbell (2008)
argues: “Soil science, soil classification, mapping and monitoring systems and resources are not
ends in themselves, they are means to an end. The objective is more sustainable management of
soil.” We envisage that in the near future soil surveyors will have to completely open soil infor-
mation systems to users so that they can also contribute to construction and influence content.
Goodchild (2008) calls this “Web 2.0” (read and write) and/or “Web 3.0” (read, write and exe-
cute) approaches to content creation. We also envisage that soil information will increasingly be
produced using global vs local models and increasingly using distributed data and computing (Fig.
1.12).
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Fig. 1.12 The future of global mapping and environmental monitoring activities is expected to be increasingly
automated and distributed.

One example of a web-interface, provided to make access to input and output soil data more
efficient, is the California Soil Resource Lab SoilWeb (O’Geen et al, 2017). Here, a series of web-
apps and simple interfaces to PostGIS and similar databases are used to empower users, including
developers, to access soil data without using a sophisticated GIS or similar.
There is also increasing interest in the economic aspects of soil functions in relation to soil mapping
and soil information use. For a soil mapper to justify the importance of producing spatial soil
information there is no better argument than a thorough economic assessment of its use.

There is an increasing need to quantify economic aspects of soil functions in relation to soil
mapping and soil information use: What is the value of soil information for food production?
How much does some sophisticated geostatistical mapping method reduce costs (while producing
equally accurate information)? How much does soil (environmental) remediation cost? What is
the cost-benefit ratio between soil mapping and soil exploitation? What is the global value of soil
for fixation of atmospheric gasses or for water filtering or retention?

1.5.3 Soil information users

Typical user groups of soil information include (Soil survey Division staff, 1993; Harpstead et al,
2001):



52 1 Soil resource inventories and soil maps

1. At local/farm level:

1. farmers and ranchers who want to maximize sustainability and/or production efficiency;

2. fertilizer dealers and agricultural consulting companies, who want to sell competitive prod-
ucts and services;

3. civil engineers who plan roads, airports and similar;

4. land development agencies who must consider the soil foundations, streets, lawns and e.g. lo-
cations for septic systems,

5. bankers and financial agencies who give loans, provide insurance or buy or sell land;

6. foresters who plan harvesting or reforestation operations and must know the relevant condi-
tions and capabilities of the soil;

7. tax assessors who assign potential value for a given piece of farmland and/or ranch land;

2. At national level:

1. agricultural ministries and land use planning agencies (for developing and implementing
policies and plans);

2. environmental protection agencies, who develop and enforce management plans for protected
areas or areas of special value;

3. environmental impact assessment companies and agencies, who model various management
scenarios;

4. agricultural extension agencies;

5. natural hazard (e.g. flooding or landslide) monitoring agencies;

3. At continental or global levels:

1. agricultural development organizations such as FAO, CGIAR (Consortium of International
Agricultural Research Centers) research institutes;

2. international environmental protection agencies, such as UNEP;

3. global financial organizations and trading entties, such as the World Bank;

4. global biogeochemical cycle modelers;

5. climate change modelers;

The future for digital soil data may well lie in task-oriented Soil Information Systems (as proposed
by Gerard Heuvelink at the DSM 2010 conference in Rome), in which only input data and analyt-
ical models are stored, permitting an infinite number of maps and visualizations to be generated
on-demand by users. This implies that future soil mappers will eventually evolve from people that
draw maps to process moderators, and the maps will evolve from static to interactive, on-demand
created maps. Likewise, if the soil mapping tools are exposed to the public, anyone will be able
to evolve from a passive user into an active soil mapper. In that sense, there is also an increasing
potential in crowd-sourcing soil mapping to a wider possible community.
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1.5.4 Usability of soil geographical database

Through PSM, a soil data production agency aims at delivering products of known and reported
quality. The quality of a soil geographical database is a product of a number of factors (Fig. 1.13):

1. Attribute and thematic accuracy — How well do the attribute data correspond to reality? How
well do map legends correspond to reality?

2. Adequacy and consistency — How adequate is the produced map for its intended use? How
consistent is the mapping methodology (sampling intensity, thematic coverage, lab analysis
techniques)?

3. Geographical coverage and completeness — Does the GIS provide information for the whole
area of interest? How many areas are missing and when will they be made available? Are all
requested variables available?

4. Completeness and accuracy of the metadata — How exactly was the map produced? What do
certain abbreviations mean and where can more technical information about data processing
steps be found?

5. Data integrity and interoperability — How can the data be integrated within an existing GIS?
Are the data optimized for distribution and import?

6. Accessibility and data sharing capacity — Are the data available for download and are they
easy to obtain? How many users can access the data at the same time? Are the data free and
easily obtained?
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Fig. 1.13 Usability of a Soil Information System is basically a function of a number of data usability measures
from which the following four (C’s) are essential: completeness, consistency, correctness and currency.
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By maximizing each of the usability measures listed above we can be confident of achieving the
maximum quality for output products. In reality, we can only improve each of the listed factors
up to a certain level. Then, due to practical limits, we reach some best possible performance given
the available funds and methods, beyond which no further improvement is feasible. For example,
the capacity to serve geodata is determined by the technical capacity of the server system. In
order to improve this performance we either have to invest more money to get better computers
or re-design the data model so that it is more efficient in fulfilling some operation.

While the objective of PSM (as outlined in this book) is to increase measures such as adequacy,
coverage and completeness, inherent properties of the legacy data unfortunately can not be as
easily improved. We can at least assess, and report on, the input data consistency, and evaluate
and report the final accuracy of the output products. Once we have estimated the true mapping
accuracy, and under the assumption that mapping accuracy can be linearly improved by increasing
the sampling intensity, we can estimate the total number of additional samples necessary to reach
a desired level of accuracy (e.g. even approaching 100% accuracy).

For Keith Shepherd (ICRAF; personal communication) the key to optimization of decision making
is to accurately account for uncertainty — to make sense out of measurements one needs to:

• Know the decision you are trying to make,

• Know the current state of uncertainty (your priors),

• Measure where it matters and only enough to make a sound decision.

The quality of a geospatial database is a function of accuracy, adequacy, consistency, complete-
ness, interoperability, accessibility and serving capacity. Each of these usability measures can be
optimized up to a certain level depending on the available resources.

In practice, soil surveyors rarely have the luxury of returning to the field to collect additional
samples to iteratively improve predictions and maps, but the concept of iterative modeling of
spatial variation is now increasingly accepted.

1.6 Uncertainty of soil variables

1.6.1 Basic concepts

An important aspect of more recent soil mapping projects, such as the GlobalSoilmap project, is a
commitment to estimating and reporting the uncertainty associated with all predictions. This is a
recent improvement to soil data, as uncertainty in traditional soil maps has often been reported (if
given at all) only using global estimates. Maps of uncertainty (confidence limits and/or prediction
error) of soil properties is a new soil data product and there is an increasing demand for such
maps. But what is ‘uncertainty’ and how do we measure and describe it, particularly for specific
point locations?
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Walker et al (2003) define uncertainty as “any deviation from the unachievable ideal of completely
deterministic knowledge of the relevant system”. The purpose of measurement is to reduce deci-
sion uncertainty; the purpose of planning soil sampling campaigns is to find an optimum between
project budget and targeted accuracy. A general framework for assessing and representing uncer-
tainties in general environmental data is reviewed by Refsgaard et al (2007). In this framework, a
distinction is made regarding how uncertainty can be described, i.e. whether this can be done by
means of:

• probability distributions or upper and lower bounds,

• some qualitative indication of uncertainty,

• or scenarios, in which a partial (not exhaustive) set of possible outcomes is simulated.

Further, the methodological quality of an uncertain variable can be assessed by expert judgement,
e.g. whether or not instruments or methods used are reliable and to what degree, or whether
or not an experiment for measuring an uncertain variable was properly conducted. Finally, the
“longevity”, or persistence, of uncertain information can be evaluated, i.e. to what extent does the
information on the uncertainty of a variable change over time.

Estimates of uncertainty of soil property and soil class predictions are an increasingly important
extension to soil mapping outputs. Maps of spatial variation in uncertainty can be submitted as
maps of upper and lower confidence limits, probability distributions or density functions, prediction
error maps and/or equiprobable simulations.

Heuvelink and Brown (2006) observed that soil data are rarely certain or ‘error free’, and these
errors may be difficult to quantify in practice. Indeed, the quantification of error, defined here as
a ‘departure from reality’, implies that the ‘true’ state of the environment is known, which is often
not possible.

1.6.2 Sources of uncertainty

There are several sources of uncertainty in soil data. For soil profile data the sources of error are
for example:

1. sampling (human) bias or omission of important areas;

2. positioning error (location accuracy);

3. sampling error (at horizon level i.e. in a pit);

4. measurement error (in the laboratory);

5. temporal sampling error (changes in property value with time are ignored);

6. data input error (or typing error);

7. data interpretation error;
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For soil delineations, the common sources of error (as illustrated in Fig. 1.14) are:

1. human bias (under or over representation) / omission of important areas;

2. artifacts and inaccuracies in the aerial photographs and other covariate data sources;

3. weak or non-obvious relationships between environmental conditions and observed spatial dis-
tributions of soils;

4. use of inconsistent mapping methods;

5. digitizing error;

6. polygonization (mapping unit assignment) error;

 

 

Fig. 1.14 20 photo-interpretations done independently using the same aerial photograph overlaid on top of
each other. This illustrates uncertainty of position of soil borders due to operator’s subjective concepts. Image
credit: Legros (1997).

Another important source of uncertainty is the diversity of laboratory methods (see further chapter
5). Many columns in the soil profile databases in pan-continental projects were produced by
merging data produced using a diversity of methods for data collection and analysis (see e.g.
Panagos et al (2013)). So even if all these are quite precise, if we ignore harmonization of this data
we introduce intrinsic uncertainty which is practically invisible but possibly significant.

Kuhn and Johnson (2013) list the four most common reasons why a predictive model fails:

1. inadequate pre-processing of the input data,

2. inadequate model validation,
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3. unjustified extrapolation (application of the model to data that reside in a space unknown to
the model),

4. over-fitting of the model to the existing data.

Each of these is addressed in further chapters and can often be tracked back with repeated modeling
and testing.

1.6.3 Quantifying the uncertainty in soil data products

To quantify the uncertainty we must derive probability distributions. There are three main ap-
proaches to achieve this (Brus et al, 2011; Heuvelink, 2014):

1. Direct uncertainty quantification through geostatistical modelling of soil properties.

2. Geostatistical modelling of the error in existing soil property maps.

3. Expert judgement/heuristic approaches.

In the first case uncertainty is directly reported by a geostatistical model. However, any model is
a simplified representation of reality, and so is the geostatistical model, so that if our assumptions
are incorrect then also the estimate of the uncertainty will be poor. A model-free assessment of
uncertainty can be produced by collecting independent samples, preferably by using some pre-
defined probability sampling (Brus et al, 2011). This procedure basically works the same way as
for geostatistical modelling of the soil property itself. The problem with model-free assessment
of uncertainty is that this is often the most expensive approach to quantification of uncertainty
as new soil samples need to be collected. Also, there is a difference between global assessment of
uncertainty and producing maps that depict spatial patterns of uncertainty. To assess mean error
over an entire study area we might need only 50–100 points, but to accurately map the spatial
pattern of actual errors we might need an order of magnitude more points.

Uncertainty in soil data products can be quantified either via the geostatistical model, or by
using a model-free assessment of uncertainty (independent validation), or by relying on expert
judgement.

1.6.4 Common uncertainty levels in soil maps

Even small errors can compound and propagate to much larger errors, so that predictions can
exceed realistic limits. In some cases, even though we spend significant amounts of money to
collect field data, we can still produce statistically insignificant predictions. For example, imagine
if the location accuracy for soil profiles is ±5 km or poorer. Even if all other data collection
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techniques are highly accurate, the end result of mapping will be relatively poor because we are
simply not able to match the environmental conditions with the actual soil measurements.

Already at that site level, soil survey can result in significant uncertainty. Pleijsier (1986) sent the
same soil samples to a large number of soil labs in the world and then compared results they got
independently. This measure of uncertainty is referred to as the “inter-laboratory variation”. Soil
lab analysis studies by Pleijsier (1986) and van Reeuwijk (1982; Pleijsier, 1984) have shown that
inter-laboratory variation in analytical results is much greater than previously suspected.

As mentioned previously, if all other sources of error in the soil mapping framework have been
reduced, the only remaining strategy to reduce uncertainty in soil maps is to increase sampling
intensity (Fig. 1.15, Lagacherie (1992)). This is again possible only up to a certain degree — even
if we would sample the whole study area with an infinite number of points, we would still not be
able to explain some significant portion of uncertainty. A map can never be 100% valid (Oreskes
et al, 1994).
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Fig. 1.15 Reduction of prediction error as a function of sampling intensity (for three control areas). Based on
Lagacherie (1992).

Soil mapping is not a trivial task. Validation results for soil maps can often be discouraging.
Kempen et al (2011) for example use the highest quality soil (17 complete profiles per square-
km) and auxiliary data (high quantity of 25 m resolution maps) to map the distribution of soil
organic matter in a province of the Netherlands. The validation results showed that, even with
such high quality and density of input data and extensive modeling, they were able to explain
only an average of 50% of the variability in soil organic carbon (at 3D prediction locations). This
means that commonly, at the site level, we might encounter a significant short-range variability,
which is unmappable at a feasible resolution resolution, that we will not be able to model even
with the most sophisticated methods.
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Fig. 1.16 Relationship between the numeric resolution (visualized using a histogram plot on the left), and
amount of variation explained by the model and standard deviation of the prediction error. Variable used in
this example: soil pH.

As a rule of thumb, the amount of variation explained by a model, when assessed using validation,
can be used to determine the numeric resolution of the map. For example, if the sampling (or
global) variance of soil pH is 1.85 units (i.e. s.d. = 1.36), then to be able to provide an effective
numeric resolution of 0.5 units, we need a model that can explain at least 47% of the original
variance (Fig. 1.16). However, to be able to provide an effective numeric resolution of 0.2 units,
we would need a model that explains 91% of variability, which would be fairly difficult to achieve.

1.7 Summary and conclusions

In this chapter we have presented and described conventional soil resource inventories and soil
data products and discussed how these are related to new and emerging methods for automated
soil mapping. We have identified, reviewed and discussed the scientific theory and methods that
underlie both conventional and pedometric soil mapping and discussed how each is related to the
other within a framework of the universal model of soil variation. We have provided an in-depth
review of the major sources of legacy soils data as collected by conventional soil survey activities
(point profile data, maps and expert knowledge) and discussed the strengths and limitations of
each source for supporting current efforts to produce new soils information (within PSM) using
state-of-the-art Statistical and Machine Learning methods. We have also outlined a vision of
what a Soil Information System is and how such systems can be configured and used to support
production and distribution of global maps of soil properties and soil classes using PSM.
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The main point of this chapter is to provide full documentation of, and justification for, the choices
that have been made in designing and implementing the PSM framework (a more practical steps
on how to organize PSM projects are further given in chapter 8). At present, PSM is designed
to produce local to global maps of soil properties and soil classes using legacy soil data (point
profile data, maps and expert knowledge), along with available global covariate data, as inputs
to multi-scale, hierarchical, quantitative, global prediction models. At some future date, it is
hoped, and expected, that PSM will be able to make increasing use of newly collected (likely
crowd-sourced) field observations and laboratory analysis data that are accurately geo-referenced,
consistent, widespread and of sufficient density to support production of accurate predictions at
finer spatial resolutions (e.g. 10’s to 100’s of m). In the meantime, in order to produce interim
products immediately, it is necessary, and desirable, to make use of existing legacy soil data and
existing covariates. It is important to acknowledge and understand the capabilities and limitations
of the existing legacy data sources at our disposal presently and of the methods that we currently
possess to process and use these data.

Each cycle of production in PSM is also a learning cycle that should lead to improved methods,
improved products and lower costs. PSM is not a static process but, rather, it is a dynamic endeavor
meant to grow, evolve and improve through time. Initial products, produced using existing legacy
soil information sources, will increasingly evolve into new products produced using a combination
of existing legacy data and newly collected data.



Chapter 2

Software installation and first steps

Edited by: T. Hengl
This section contains instructions on how to install and use software to run predictive soil mapping
and export results to GIS or web applications. It has been written (as has most of the book) for
Linux users, but should not be too much of a problem to adapt to Microsoft Windows OS and/or
Mac OS.

2.1 List of software in use

 

 

Fig. 2.1 Software combination used in this book.

For processing the covariates we used a combination of Open Source GIS software, primarily
SAGA GIS (Conrad et al, 2015), packages raster (Hijmans and van Etten, 2017), sp (Pebesma and
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Bivand, 2005), and GDAL (Mitchell and GDAL Developers, 2014) for reprojecting, mosaicking and
merging tiles. GDAL and parallel packages in R are highly suitable for processing large volumes
of data.

Software required to run all exercises in the book includes:

• R1 or MRO2;

• RStudio3;

• R packages: GSIF, plotKML, aqp, ranger, caret, xgboost, plyr, raster, gstat, randomForest,
ggplot2, e1071 (see: how to install R package4)

• SAGA GIS5 (on Windows machines run windows installer);

• Google Earth or Google Earth Pro;

• QGIS6;

• GDAL v2.x7 for Windows machines use e.g. “gdal-*-1800-x64-core.msi“8;

R script used in this tutorial can be downloaded from github9. As a gentle introduction to the R
programming language and to soil classes in R we recommend the section 3.7 on importing and
using soil data. Some more examples of SAGA GIS + R usage can be found in the soil covariates
chapter. To visualize spatial predictions in a web-browser or Google Earth you can try using
plotKML package (Hengl et al, 2015b). As a gentle introduction to the R programming language
and spatial classes in R we recommend following the Geocomputation with R book10. Obtaining
the R reference card11 is also highly recommended.

2.2 Installing software on Ubuntu OS

On Ubuntu (often the preferred standard for the GIS community) the main required software can
be installed within 10–20 minutes. We start with installing GDAL, proj4 and some packages that
you might need later on:

1 http://cran.r-project.org/bin/windows/base/
2 https://mran.microsoft.com/download/
3 http://www.rstudio.com/products/RStudio/
4 http://www.r-bloggers.com/installing-r-packages/
5 http://sourceforge.net/projects/saga-gis/
6 https://qgis.org/en/site/forusers/download.html
7 https://trac.osgeo.org/gdal/wiki/DownloadingGdalBinaries
8 http://download.gisinternals.com/sdk/downloads/
9 https://github.com/envirometrix/PredictiveSoilMapping
10 https://geocompr.robinlovelace.net/
11 https://cran.r-project.org/doc/contrib/Baggott-refcard-v2.pdf

http://cran.r-project.org/bin/windows/base/
https://mran.microsoft.com/download/
http://www.rstudio.com/products/RStudio/
http://www.r-bloggers.com/installing-r-packages/
http://sourceforge.net/projects/saga-gis/
https://qgis.org/en/site/forusers/download.html
https://trac.osgeo.org/gdal/wiki/DownloadingGdalBinaries
http://download.gisinternals.com/sdk/downloads/
https://github.com/envirometrix/PredictiveSoilMapping
https://geocompr.robinlovelace.net/
https://cran.r-project.org/doc/contrib/Baggott-refcard-v2.pdf
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sudo apt-get install libgdal-dev libproj-dev
sudo apt-get install gdal-bin python-gdal

Next, we install R and RStudio. For R studio you can use the CRAN distribution or the optimized
distribution provided by the former REvolution company (now owned by Microsoft):

wget https://mran.blob.core.windows.net/install/mro/3.4.3/microsoft-r-open-3.4.3.tar.gz
tar -xf microsoft-r-open-3.4.3.tar.gz
cd microsoft-r-open/
sudo ./install.sh

Note that R versions are constantly being updated so you will need to replace the URL above
based on the most current information provided on the home page (http://mran.microsoft.com).
Once you run install.sh you will have to accept the license terms twice before the installation can
be completed. If everything completes successfully, you can get the session info by typing:

sessionInfo()
#> R version 3.5.2 (2017-01-27)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 14.04.5 LTS
#>
#> Matrix products: default
#> BLAS: /home/travis/R-bin/lib/R/lib/libRblas.so
#> LAPACK: /home/travis/R-bin/lib/R/lib/libRlapack.so
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] knitr_1.21 microbenchmark_1.4-6
#>
#> loaded via a namespace (and not attached):
#> [1] compiler_3.5.2 magrittr_1.5 bookdown_0.9 tools_3.5.2
#> [5] htmltools_0.3.6 yaml_2.2.0 Rcpp_1.0.0 codetools_0.2-15
#> [9] stringi_1.2.4 rmarkdown_1.11 stringr_1.3.1 xfun_0.5
#> [13] digest_0.6.18 evaluate_0.12

http://mran.microsoft.com
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system("gdalinfo --version")

This shows, for example, that the this installation of R is based on the Ubuntu 16.* LTS oper-
ating system and the version of GDAL is up to date. Using an optimized distribution of R (read
more about “The Benefits of Multithreaded Performance with Microsoft R Open”12) is especially
important if you plan to use R for production purposes i.e. to optimize computing and generation
of soil maps for large numbers of pixels.

To install RStudio we can run:

sudo apt-get install gdebi-core
wget https://download1.rstudio.org/rstudio-1.1.447-amd64.deb
sudo gdebi rstudio-1.1.447-amd64.deb
sudo rm rstudio-1.1.447-amd64.deb

Again, RStudio is constantly updated so you might have to obtain the most recent RStudio version
and distribution. To learn more about doing first steps in R and RStudio and to learn to improve
your scripting skills more efficiently, consider studying the following tutorials:

• Grolemund, G., (2014) Hands-On Programming with R13. O’Reilly, 236 pages.

• Gillespie, C., Lovelace, R., (2016) Efficient R programming14. O’Reilly, 222 pages.

• Wilke, C.O., (2019) Fundamentals of Data Visualization15. O’Reilly, in press.

2.3 Installing GIS software

Predictive soil mapping is about making maps, and working with maps requires use of GIS software
to open, view overlay and analyze the data spatially. GIS software recommended in this book for
soil mapping consists of SAGA GIS, QGIS, GRASS GIS and Google Earth. QGIS comes with
an extensive literature16 and can be used to publish maps and combine layers served by various
organizations. SAGA GIS, being implemented in C++, is highly suited for running geoprocessing
on large data sets. To install SAGA GIS on Ubuntu we can use:

sudo add-apt-repository ppa:ubuntugis/ubuntugis-unstable
sudo apt-get update
sudo apt-get install saga

12 https://mran.microsoft.com/documents/rro/multithread
13 https://rstudio-education.github.io/hopr/
14 https://csgillespie.github.io/efficientR/
15 https://serialmentor.com/dataviz/
16 https://www.qgis.org/en/docs/

https://mran.microsoft.com/documents/rro/multithread
https://rstudio-education.github.io/hopr/
https://csgillespie.github.io/efficientR/
https://serialmentor.com/dataviz/
https://www.qgis.org/en/docs/
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If installation is successful, you should be able to access SAGA command line also from R by
using:

system("saga_cmd --version")

To install QGIS (https://download.qgis.org/) you might first have to add the location of the
debian libraries:

sudo sh -c 'echo "deb http://qgis.org/debian xenial main" >> /etc/apt/sources.list'
sudo sh -c 'echo "deb-src http://qgis.org/debian xenial main " >> /etc/apt/sources.list'
sudo apt-get update
sudo apt-get install qgis python-qgis qgis-plugin-grass

Other utility software that you might need include htop program that allows you to track processing
progress:

sudo apt-get install htop iotop

and some additional libraries use devtools, geoR and similar, which can be installed via:

sudo apt-get install build-essential automake;
libcurl4-openssl-dev pkg-config libxml2-dev;
libfuse-dev mtools libpng-dev libudunits2-dev

You might also need the 7z software for easier compression and pigz for parallelized compression:

sudo apt-get install pigz zip unzip p7zip-full

2.4 WhiteboxTools

WhiteboxTools (http://www.uoguelph.ca/~hydrogeo/WhiteboxTools/), contributed by John
Lindsay, is an extensive suite of functions and tools for DEM analysis which is especially useful
for extending the hydrological and morphometric analysis tools available in SAGA GIS and
GRASS GIS (Lindsay, 2016). Probably the easiest way to use WhiteboxTools is to install a QGIS
plugin (kindly maintained by Alexander Bruy: https://plugins.bruy.me/) and then learn and
extend the WhiteboxTools scripting language by testing things out in QGIS (see below).

https://download.qgis.org/
http://www.uoguelph.ca/~hydrogeo/WhiteboxTools/
https://plugins.bruy.me/
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Fig. 2.2 Calling WhiteboxTools from QGIS via the WhiteboxTools plugin.

The function FlowAccumulationFullWorkflow is, for example, a wrapper function to filter out all spuri-
ous sinks and to derive a hydrological flow accumulation map in one step. To run it from command
line we can use:

system(paste0('"/home/tomislav/software/WBT/whitebox_tools" ',
'--run=FlowAccumulationFullWorkflow --dem="./extdata/DEMTOPx.tif" ',
'--out_type="Specific Contributing Area" --log="False" --clip="False" ',
'--esri_pntr="False" ',
'--out_dem="./extdata/DEMTOPx_out.tif" ',
'--out_pntr="./extdata/DEMTOPx_pntr.tif" ',
'--out_accum="./extdata/DEMTOPx_accum.tif" -v'))
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Fig. 2.3 Hydrological flow accummulation map based on the Ebergotzen DEM derived using WhiteboxTools.

This produces a number of maps, from which the hydrological flow accumulation map is usually
the most useful. It is highly recommended that, before running analysis on large DEM’s using
WhiteboxTools and/or SAGA GIS, you test functionality using smaller data sets i.e. either a
subset of the original data or using a DEM at very coarse resolution (so that width and height of
a DEM are only few hundred pixels). Also note that WhiteboxTools do not presently work with
GeoTIFs that use the COMPRESS=DEFLATE creation options.

2.5 RStudio

RStudio is, in principle, the main R scripting environment and can be used to control all other
software used in this tutorial. A more detailed RStudio tutorial is available at: RStudio — Online
Learning17. Consider also following some spatial data tutorials e.g. by James Cheshire (http:
//spatial.ly/r/). Below is an example of an RStudio session with R editor on right and R console
on left.
17 http://www.rstudio.com/resources/training/online-learning/

http://spatial.ly/r/
http://spatial.ly/r/
http://www.rstudio.com/resources/training/online-learning/
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Fig. 2.4 RStudio is a commonly used R editor written in C++.

To install all required R packages used in this tutorial at once, you can use:

ls <- c("reshape", "Hmisc", "rgdal", "raster", "sf", "GSIF", "plotKML",
"nnet", "plyr", "ROCR", "randomForest", "quantregForest",
"psych", "mda", "h2o", "h2oEnsemble", "dismo", "grDevices",
"snowfall", "hexbin", "lattice", "ranger",
"soiltexture", "aqp", "colorspace", "Cubist",
"randomForestSRC", "ggRandomForests", "scales",
"xgboost", "parallel", "doParallel", "caret",
"gam", "glmnet", "matrixStats", "SuperLearner",
"quantregForest", "intamap", "fasterize", "viridis")

new.packages <- ls[!(ls %in% installed.packages()[,"Package"])]
if(length(new.packages)) install.packages(new.packages)

This will basically check if any package is installed already, then install it only if it is missing. You
can put this line at the top of each R script that you share so that anybody using that script will
automatically obtain all required packages.

Note that the h2o package requires Java libraries, so you will also have to install Java by using
e.g.:

sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update
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sudo apt-get install oracle-java8-installer
java -version

2.6 plotKML and GSIF packages

Many examples in this tutorial rely on the top 5 most commonly used packages for spatial data:
(1) sp and rgdal18, (2) raster19, (3) plotKML20 and (4) GSIF21. To install the most up-to-date
version of plotKML/GSIF, you can also use the R-Forge versions of the package:

if(!require(GSIF)){
install.packages("GSIF", repos=c("http://R-Forge.R-project.org"),

type = "source", dependencies = TRUE)
}
#> Loading required package: GSIF
#> GSIF version 0.5-5 (2019-01-04)
#> URL: http://gsif.r-forge.r-project.org/

A copy of the most-up-to-date and stable versions of plotKML and GSIF is also available on
github22. To run only some specific function from the GSIF package you can do e.g.:

source_https <- function(url, ...) {
# load package
require(RCurl)
# download:
cat(getURL(url, followlocation = TRUE,

cainfo = system.file("CurlSSL", "cacert.pem", package = "RCurl")),
file = basename(url))

source(basename(url))
}
source_https("https://raw.githubusercontent.com/cran/GSIF/master/R/OCSKGM.R")

To test if these packages work properly, create soil maps and visualize them in Google Earth by
running the following lines of code (see also function: fit.gstatModel23):

18 https://cran.r-project.org/web/views/Spatial.html
19 https://cran.r-project.org/web/packages/raster/
20 http://plotkml.r-forge.r-project.org/
21 http://gsif.r-forge.r-project.org/
22 https://github.com/cran/GSIF
23 http://gsif.r-forge.r-project.org/fit.gstatModel.html

https://cran.r-project.org/web/views/Spatial.html
https://cran.r-project.org/web/packages/raster/
http://plotkml.r-forge.r-project.org/
http://gsif.r-forge.r-project.org/
https://github.com/cran/GSIF
http://gsif.r-forge.r-project.org/fit.gstatModel.html
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library(GSIF)
library(sp)
library(boot)
library(aqp)
#> This is aqp 1.17
#>
#> Attaching package: 'aqp'
#> The following object is masked from 'package:base':
#>
#> union
library(plyr)
library(rpart)
library(splines)
library(gstat)
library(quantregForest)
#> Loading required package: randomForest
#> randomForest 4.6-14
#> Type rfNews() to see new features/changes/bug fixes.
#> Loading required package: RColorBrewer
library(plotKML)
#> plotKML version 0.5-9 (2019-01-04)
#> URL: http://plotkml.r-forge.r-project.org/
demo(meuse, echo=FALSE)
omm <- fit.gstatModel(meuse, om~dist+ffreq, meuse.grid, method="quantregForest")
#> Fitting a Quantile Regression Forest model...
#> Fitting a 2D variogram...
#> Saving an object of class 'gstatModel'...
om.rk <- predict(omm, meuse.grid)
#> Subsetting observations to fit the prediction domain in 2D...
#> Prediction error for 'randomForest' model estimated using the 'quantreg' package.
#> Generating predictions using the trend model (RK method)...
#> [using ordinary kriging]
#>
100% done
#> Running 5-fold cross validation using 'krige.cv'...
#> Creating an object of class "SpatialPredictions"
om.rk
#> Variable : om
#> Minium value : 1
#> Maximum value : 17
#> Size : 153
#> Total area : 4964800
#> Total area (units) : square-m
#> Resolution (x) : 40
#> Resolution (y) : 40
#> Resolution (units) : m
#> Vgm model : Exp
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#> Nugget (residual) : 2.32
#> Sill (residual) : 4.76
#> Range (residual) : 2930
#> RMSE (validation) : 1.75
#> Var explained : 73.8%
#> Effective bytes : 1202
#> Compression method : gzip
#plotKML(om.rk)

 

 

Fig. 2.5 Example of a plotKML output for geostatistical model and prediction.

2.7 Connecting R and SAGA GIS

SAGA GIS provides comprehensive GIS geoprocessing software with over 600 functions24. SAGA
GIS can not be installed from RStudio (it is not a package for R). Instead, you need to install
SAGA GIS using the installation instructions from the software homepage25. After you have
installed SAGA GIS, you can send processes from R to SAGA GIS by using the saga_cmd command
line interface:

24 http://www.saga-gis.org/saga_tool_doc/index.html
25 https://sourceforge.net/projects/saga-gis/

http://www.saga-gis.org/saga_tool_doc/index.html
https://sourceforge.net/projects/saga-gis/
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if(Sys.info()['sysname']=="Windows"){
saga_cmd = "C:/Progra~1/SAGA-GIS/saga_cmd.exe"

} else {
saga_cmd = "saga_cmd"

}
system(paste(saga_cmd, "-v"))
#> Warning in system(paste(saga_cmd, "-v")): error in running command

To use some SAGA GIS function you need to carefully follow the SAGA GIS command line
arguments26. For example,

library(plotKML)
library(rgdal)
#> rgdal: version: 1.3-6, (SVN revision 773)
#> Geospatial Data Abstraction Library extensions to R successfully loaded
#> Loaded GDAL runtime: GDAL 2.2.2, released 2017/09/15
#> Path to GDAL shared files: /usr/share/gdal/2.2
#> GDAL binary built with GEOS: TRUE
#> Loaded PROJ.4 runtime: Rel. 4.8.0, 6 March 2012, [PJ_VERSION: 480]
#> Path to PROJ.4 shared files: (autodetected)
#> Linking to sp version: 1.3-1
library(raster)
#>
#> Attaching package: 'raster'
#> The following objects are masked from 'package:aqp':
#>
#> metadata, metadata<-
data("eberg_grid")
gridded(eberg_grid) <- ~x+y
proj4string(eberg_grid) <- CRS("+init=epsg:31467")
writeGDAL(eberg_grid["DEMSRT6"], "./extdata/DEMSRT6.sdat", "SAGA")
system(paste(saga_cmd, 'ta_lighting 0 -ELEVATION "./extdata/DEMSRT6.sgrd"

-SHADE "./extdata/hillshade.sgrd" -EXAGGERATION 2'))
#> Warning in system(paste(saga_cmd, "ta_lighting 0 -ELEVATION \"./extdata/
#> DEMSRT6.sgrd\" \n -SHADE \"./extdata/hillshade.sgrd\" -EXAGGERATION 2")):
#> error in running command

26 http://www.saga-gis.org/saga_tool_doc/index.html

http://www.saga-gis.org/saga_tool_doc/index.html
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Fig. 2.6 Deriving hillshading using SAGA GIS and then visualizing the result in R.

2.8 Connecting R and GDAL

GDAL is another very important software tool for handling spatial data (and especially for ex-
changing / converting spatial data). GDAL also needs to be installed separately (for Windows
machines use e.g. “gdal-201-1800-x64-core.msi”27) and then can be called from command line:

if(.Platform$OS.type == "windows"){
gdal.dir <- shortPathName("C:/Program files/GDAL")
gdal_translate <- paste0(gdal.dir, "/gdal_translate.exe")
gdalwarp <- paste0(gdal.dir, "/gdalwarp.exe")

} else {
gdal_translate = "gdal_translate"
gdalwarp = "gdalwarp"

}
system(paste(gdalwarp, "--help"))
#> Warning in system(paste(gdalwarp, "--help")): error in running command

27 http://download.gisinternals.com/sdk/downloads/

http://download.gisinternals.com/sdk/downloads/
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We can use GDAL to reproject the grid from the previous example:

system(paste('gdalwarp ./extdata/DEMSRT6.sdat ./extdata/DEMSRT6_ll.tif',
'-t_srs \"+proj=longlat +datum=WGS84\"'))

#> Warning in system(paste("gdalwarp ./extdata/DEMSRT6.sdat ./extdata/
#> DEMSRT6_ll.tif", : error in running command
library(raster)
plot(raster("./extdata/DEMSRT6_ll.tif"))
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Fig. 2.7 Ebergotzen DEM reprojected in geographical coordinates.

The following books are highly recommended for improving programming skills in R and specially
for the purpose of geographical computing:

• Bivand, R., Pebesma, E., Rubio, V., (2013) Applied Spatial Data Analysis with R28. Use
R Series, Springer, Heidelberg, 2nd Ed. 400 pages.

• Lovelace, R., Nowosad, J., Muenchow, J., (2018) Geocomputation with R29. R Series, CRC
Press, 338 pages.

28 http://www.asdar-book.org/
29 https://geocompr.robinlovelace.net/

http://www.asdar-book.org/
https://geocompr.robinlovelace.net/


Chapter 3

Soil observations and variables

Edited by: Hengl T., MacMillan R.A. and Leenaars J.G.B.
This chapter identifies and provides comprehensive definitions and descriptions for a standardized
set of soil properties (and classes), which are commonly predicted using PSM. We first discuss
the complexity of measuring and standardizing (or harmonizing) soil attributes, then focus on the
key soil properties and classes of interest for global soil mapping. The purpose of this chapter is
to serve as a reference, and background, for other chapters where the focus is on generating soil
maps, interpreting accuracy results and similar.
Please note that this chapter draws extensively from materials previously published as part of
the specifications for the GlobalSoilMap project (Arrouays et al, 2014b). Large blocks of text
extracted verbatum from these prevously published GlobalSoilMap specifications were, in fact,
originally largely composed and written by the second author of this chapter in his former role as
Science Coordinator for the GlobalSoilMap project (www.globalsoilmap.net). We acknowledge the
source of much of the content of this chapter as having originated from the previously published
GlobalSoilMap specifications.
The R tutorial at the end of the chaper reviews soil data classes and functions for R. It illustrates
how to organize and reformat soil data in R for spatial analysis, how to import soil data into R and
how to export data and plot it in Google Earth. To learn more about the Global Soil Information
Facilities (GSIF) package, visit the main documentation page (http://gsif.r-forge.r-project.org/).

3.1 Basic concepts

3.1.1 Types of soil observations

As mentioned in the previous chapter, values for soil properties or attributes are obtained through
observation and/or measurement of a soil feature, using a specified method. We refer to observa-
tions and measurements of the characteristics of soil properties and/or feature attributes as soil
observations (see also the Observation and Measurements OGC standard1; ISO/DIS 19156). From
1 http://www.opengeospatial.org/standards/om
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the perspective of the technology used, soil observations can be grouped as follows (see also Fig.
3.1):

1. Direct measurements obtained using analytical instruments and procedures in a laboratory or
in the field — the results of measurements are analytical values considered representative for a
given soil property.

2. Indirect soil measurements obtained using mechanical devices, analytical instruments and proce-
dures — measurement of soil properties that can be used to infer information about a different
target soil property. These can be based on soil spectroscopy and similar close-range or remote
sensing systems (Shepherd and Walsh, 2007; Viscarra Rossel et al, 2010).

3. Direct observations of soil properties and interpretations — subjectively assessed values based
on protocols for soil description as presented in manuals i.e. abundance of mottles, soil drainage
class, soil colour.

4. Indirect or derived interpretations — subjectively assessed values or conditions based mainly
on an expert’s knowledge and interpretation of observations e.g. soil classification, soil fertility
class.

 

Descriptive 

soil properties

Diagnostic soil 

horizons and 

properties

Soil types 

(classes)

Analytical soil 

properties

d
a
ta
 d
e
m
a
n
d
 

(a
p
p
lic
a
ti
o
n
)

production costs

Secondary 

(derived) soil 

properties

 

Fig. 3.1 Types of soil observations in relation to data usage and production costs. Descriptive soil observations
(e.g. manual texture or diagnostic soil horizons) are often not directly useable by end users, who are often
more interested in specific secondary soil properties (e.g. water holding capacity, erosion index, soil fertility) as
inputs to their modeling. However, descriptive field observations are often orders of magnitude more affordable
to obtain than laboratory analysis.

Field campaigns are usually the most costly part of soil surveys. Large numbers of soil observations
are made in the field to assess the spatial distribution of readily observable soil properties to provide
empirical evidence for soil mapping. Because a soil analytical measurement in the laboratory is
generally much more costly than a soil observation in the field, only a smaller subset of soil
samples is taken from the larger number of field soil observations and brought to the laboratory
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for subsequent analysis. Ideally, every soil observation would be accompanied by corresponding
soil analytical measurements to produce the most accurate and comprehensive soil information
possible.

Soil can be assessed quantitatively based on direct or indirect measurements using analytical
techniques (in a laboratory or in the field) and qualitatively or descriptively based on observations
in the field that adhere to some soil description guidelines. Examples of subjective observations
are: diagnostic soil materials and horizons, soil classes, Munsell color classes, manual texture
assessment (texture-by-hand), structure, compaction, root abundance and similar.

It is important to emphasize that soil properties, and the methods used to assess soil properties,
are two distinctly different concepts. The two can be defined together (functional definition) or can
be defined separately, as given by numerous national and international manuals and guidelines for
analytical procedures and soil description: e.g. in Natural Resources Conservation Service (2004;
Carter and Gregorich, 2007; Food and of the United Nations, 2006), and/or Van Reeuwijk (2002).
In this chapter we also make a distinction between the ‘targeted variable’ (targeted soil properties)
and ‘paths’ (determination methods).

Soil analytical data obtained in a laboratory are typically an order of magnitude more expensive to
produce than descriptive field observations (Burrough et al, 1971; Gehl and Rice, 2007; Kempen,
2011). To reduce these high costs, surveyors collect descriptive soil observations (Fig. 3.1), which
can subsequently be interpreted and linked to soil types and soil classes, which are then assumed
to be characterised by a limited and definable range of soil properties (Bouma et al, 1998). It is
also possible to convert observed values for certain soil properties to values comparable to those
measured by analytical methods (albeit with unknown precision) by using various calibration
models or conversion functions. For example, manual texturing analysis (FAO, 1990; Soil survey
Division staff, 1993) can be used as a basis for estimating soil texture fractions with a precision
of ±5 % at fraction of the cost of laboratory analysis.

Soils are usually sampled per depth interval or layer, generally using a genetic A-B-C-R system
i.e. corresponding to a soil horizon — a relatively homogeneous layer of soil (with upper and
lower depth) that is “distinctly different from other layers and informative for the soil’s nature”
(Harpstead et al, 2001). Actual soil samples are either taken from the centre of a soil horizon or
are mixed samples of the material from the whole horizon (Fig. 3.2). Decades of soil survey have
shown that soil horizons can be fuzzy objects. They may be difficult for different surveyors to
distinguish and delineate consistently (Burrough, 1989; de Gruijter et al, 1997). Soil correlation
exercises try (not always successfully) to help different surveyors consistently recognize similar soil
horizons and assign similar codes with comparable upper and lower boundaries so as to produce
similar descriptions and classifications for any observed soil.
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Fig. 3.2 Soil observations can refer to genetic horizons (left), fixed depths i.e. point support (center) and/or
can refer to aggregate values for the complete profile (right).

An emerging approach to soil characterization is to scan the complete soil profile in different
parts of the spectra, and then decide on vertical stratification a posteriori (Viscarra Rossel et al,
2010). Nevertheless, much of the analytical data available in existing legacy soil profile databases
is sampled per soil layer and described by soil horizon.

Soil observations are taken at a geographic position and at a specific depth (or depth interval),
which is either 3D or refers to the whole solum. The 3D (longitude, latitude, depth) position
implies that the property varies not only in geographic space, but also with depth. Soil properties
that describe an entire site are by implication 2D, as are soil properties that summarise or refer
to the soil profile as a whole entity. For example, soil type does not change with depth. Also rock
outcrops, depth to bedrock and depth to ground water table are single attributes that apply to
an entire profile.

3.1.2 Soil properties of interest for global soil mapping

There are many soil properties, possibly hundreds, used in the international domain of soil science
including pedology, soil survey, soil fertility, soil hydrology, soil biology, etc. Not all of these can
be mapped globally, nor are all of explicit interest for global applications or use.

Soil data have been, and are, collected and compiled into maps at various scales for various
purposes and soil inventory projects typically begin by first carefully identifying the specific list
of soil properties that are of most interest for the anticipated uses of the planned survey. Different
soil data are required for different purposes, such as applying different models with different data
requirements.

In the past, soil surveys typically elected to focus on observing and measuring soil attributes and
properties that were considered to be relatively stable, or static, in time. For example the particle
size distribution of a soil, or its depth to bedrock, were considered to be relatively stable and not
subject to large changes over relatively short time periods (e.g. decades). Even attributes that
were known to change with management and time, such as topsoil thickness, organic carbon or
pH, were treated as relatively stable properties for the purposes of mapping.
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This choice to emphasize relatively stable soil properties and attributes was a logical consequence
of the fact that it could take years to produce a single soil map and decades to complete mapping
for an entire area of interest. Consequently, for maps to be relevant, and to remain relevant and
useful for their anticipated lifetime of use, they had to restrict themselves to trying to describe
the variation in only space (not time) of properties that could be considered stable and static.

The idea that soil properties could be assumed to remain relatively stable through time was
partially based on an assumption that most soils had achieved a relatively stable condition that
was in equilibrium with their current environment. If a soil is in equilibrium with its environment,
it can be assumed that it will retain its present attributes, since there are no strong drivers for
change. This may well apply to undisturbed soils in their natural environment, but it is not valid
for disturbed or managed soils. It is well established that human management practices can, and
do, significantly alter some key soil properties, such as pH, organic matter and topsoil thickness.
Most conventional soil maps recognized, and reported on, differences in soil properties, such as
pH or organic matter, between natural soils and managed soils. However, it was never a common
practice to name, map and characterize managed soils separately from natural soils.

Local or national soil survey projects are of direct relevance to global soil mapping initiatives if
the range of data collected encompasses the minimum data set as specified for global initiatives.
For example, completion of an update to the SOTER database for the World requires an extensive
range of soil property data as specified in the procedures manual (Van Engelen and Dijkshoorn,
2012). An update of the Harmonised World Soil Database (FAO/IIASA/ISRIC/ISS-CAS/JRC,
2012) requires a smaller range of attributes. The GlobalSoilMap project (Arrouays et al, 2014a)
selected a list of only 12 soil properties considered relevant for global analyses, and feasible to
map globally. This list includes seven basic attributes, assessed through primary observation or
measurement, and three derived attributes which are calculated from the primary soil properties
(Tbl. 3.1). These attributes are being mapped (where possible) at a fine resolution of six depth
intervals in the vertical and, 3–arcseconds in the horizontal dimension (ca. 100 m) (Fig. 3.3).
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Fig. 3.3 Standard soil horizons, solum thickness and depth to bedrock (left) vs six standard depths used in the
GlobalSoilMap project (right).
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Table 3.1 The GlobalSoilMap project has selected seven primary (depth to bedrock, organic carbon content,
pH, soil texture fractions, coarse fragments), three derived (effective soil depth, bulk density and available water
capacity) and two optional (effective cation exchange capacity and electrical conductivity) target soil properties
of interest for global soil mapping and modelling.

Variable Units Reference
Total profile depth (depth to bedrock) cm (SSDS, 1993; p.5)
Plant exploitable (effective depth) cm (SSDS, 1993; p.60)
Soil organic carbon (dry combustion) permille ISO 10694
pH index (the 1:5 H2O solution) – ISO 10390
Sand content (gravimetric) % (NRCS, 2004; p.347)
Silt content (gravimetric) % (NRCS, 2004; p.347)
Clay content (gravimetric) % (NRCS, 2004; p.347)
Coarse fragments (volumetric) % (NRCS, 2004; p.36)
Effective Cation Exchange Capacity cmol ISO 11260
Bulk density of the whole soil kg/cubic-m ISO 11272

3.1.3 Reference methods

A pragmatic solution to ensuring efficient exchange, sharing and interpretation of global soil
data is to establish reference methods for soil measurement and description. The GlobalSoilMap
project agreed that their target soil properties would be assessed and reported relative to specific,
designated reference methods. For example, soil organic carbon content of the fine earth fraction is
to be assessed and reported according to ISO10694 dry combustion method (Sleutel et al, 2007).
Values for pH are to be be reported for a 1:5 suspension of soil in water or using the CaCl2
solution, with a precision of 1 decimal place. It has also been recommended that ISO TC 190 —
soil quality standards — should be used to assess and report all data measured from air-dried soil
samples.

Soil properties designated as optional for the GlobalSoilMap consortium include Effective Cation
Exchange Capacity assessed and reported according to ISO11260 Barium Chloride (cmol+/kg =
centi-mole+ per kilogram) and Electrical conductivity in 1:1 soil–water solution (dS/m = deci-
siemens per metre). The list of soil properties identified for routine global soil mapping and
modelling is likely to grow in the years to come.

The International Organisation for Standardisation (ISO) provides international standard defi-
nitions of soil properties, and of associated methods to assess those soil properties, through ISO
TC-190 and ISO TC-345. Such unambiguously defined international standards are crucial for success
of the multi-partner global soil mapping projects.

In the following sections we focus our discussion on the soil properties that were first mapped for
the https://soilgrids.org project: depth to bedrock, occurrence of the R horizon, organic carbon
content of the fine earth fraction, pH of the fine earth fraction, particle size class contents (sand,
silt, clay) of the fine earth fraction, gravel content of the whole soil, bulk density of the whole
soil (and subsequently of the fine earth fraction) and Cation Exchange Capacity of the fine earth
fraction. We define those attributes as completely and unambiguously as possible, including the
associated reference method. For each soil property the following will be discussed:

https://soilgrids.org
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• Brief introduction to the soil property (what is it, what does it reflect, why is it of interest,
considerations; in general terms);

• Definition of the soil feature related to the soil property and its spatial domain (2D, 3D);

• Definition of the reference methods used to assess the soil property value;

• Definition of the convention used to express the soil property value (units, precision, range);

• Review of the variation in soil property definitions and in methods to assess the attribute,
including listings of several of the most widely used conversion functions cited from literature,
and with emphasis on harmonization or conversion to the reference method.

We also identify, and review, a number of other widely used measurement methods, in addition to
our selected standard methods. We describe if and how these other methods relate to the selected
reference methods and discuss issues related to harmonization and standardization for attributes
of current interest for global mapping.

3.1.4 Standard soil variables of interest for soil mapping

Some standard soil legends for listed soil properties are embedded within the GSIF package and
can be loaded by:

library(GSIF)
#> GSIF version 0.5-5 (2019-01-04)
#> URL: http://gsif.r-forge.r-project.org/
data(soil.legends)
str(soil.legends)
#> List of 12
#> $ ORCDRC :'data.frame': 40 obs. of 4 variables:
#> ..$ MIN : num [1:40] 0 0.2 0.4 0.6 0.8 1.1 1.5 1.9 2.4 3 ...
#> ..$ MAX : num [1:40] 0.2 0.4 0.6 0.8 1.1 1.5 1.9 2.4 3 3.6 ...
#> ..$ CPROB: num [1:40] 0.0161 0.0301 0.0518 0.0717 0.113 0.159 0.203 0.264 0.328 0.373 ...
#> ..$ COLOR: chr [1:40] "#000180" "#000393" "#0006A6" "#000FB7" ...
#> $ PHIHOX :'data.frame': 40 obs. of 4 variables:
#> ..$ MIN : num [1:40] 20 42 45 46 48 49 50 51 52 53 ...
#> ..$ MAX : num [1:40] 42 45 46 48 49 50 51 52 53 54 ...
#> ..$ CPROB: num [1:40] 0.0125 0.0375 0.0625 0.0875 0.1125 ...
#> ..$ COLOR: chr [1:40] "#FF0000" "#FF1C00" "#FF3900" "#FF5500" ...
#> $ PHIKCL :'data.frame': 40 obs. of 4 variables:
#> ..$ MIN : num [1:40] 20 33 35 36 37 38 38.5 39 40 40.5 ...
#> ..$ MAX : num [1:40] 33 35 36 37 38 38.5 39 40 40.5 41 ...
#> ..$ CPROB: num [1:40] 0.0125 0.0375 0.0625 0.0875 0.1125 ...
#> ..$ COLOR: chr [1:40] "#FF0000" "#FF1C00" "#FF3900" "#FF5500" ...
#> $ BLDFIE :'data.frame': 40 obs. of 4 variables:
#> ..$ MIN : num [1:40] 200 850 1000 1100 1150 1200 1220 1260 1300 1310 ...
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#> ..$ MAX : num [1:40] 850 1000 1100 1150 1200 1220 1260 1300 1310 1340 ...
#> ..$ CPROB: num [1:40] 0.0125 0.0375 0.0625 0.0875 0.1125 ...
#> ..$ COLOR: chr [1:40] "#3D3FFF" "#3A42FF" "#3745FF" "#304CFF" ...
#> $ CECSOL :'data.frame': 40 obs. of 4 variables:
#> ..$ MIN : num [1:40] 0 5 5.2 5.3 5.5 5.8 6 6.3 6.7 7.1 ...
#> ..$ MAX : num [1:40] 5 5.2 5.3 5.5 5.8 6 6.3 6.7 7.1 7.5 ...
#> ..$ CPROB: num [1:40] 0.23 0.241 0.247 0.259 0.277 0.292 0.308 0.328 0.351 0.37 ...
#> ..$ COLOR: chr [1:40] "#001998" "#0025A4" "#0031B1" "#003EBD" ...
#> $ SNDPPT :'data.frame': 40 obs. of 4 variables:
#> ..$ MIN : num [1:40] 0 1 3 4 6 8 10 12 14 16 ...
#> ..$ MAX : num [1:40] 1 3 4 6 8 10 12 14 16 19 ...
#> ..$ CPROB: num [1:40] 0.0125 0.0375 0.0625 0.0875 0.1125 ...
#> ..$ COLOR: chr [1:40] "#FFFF00" "#F8F806" "#F1F10C" "#EBEB13" ...
#> $ SLTPPT :'data.frame': 40 obs. of 4 variables:
#> ..$ MIN : num [1:40] 0 2 3 4 5 6.7 8 9 10 12 ...
#> ..$ MAX : num [1:40] 2 3 4 5 6.7 8 9 10 12 13 ...
#> ..$ CPROB: num [1:40] 0.0125 0.0375 0.0625 0.0875 0.1125 ...
#> ..$ COLOR: chr [1:40] "#FFFF00" "#F8F806" "#F1F10C" "#EBEB13" ...
#> $ CLYPPT :'data.frame': 40 obs. of 4 variables:
#> ..$ MIN : num [1:40] 0 2 3 4 5 6 7 8 9.3 10 ...
#> ..$ MAX : num [1:40] 2 3 4 5 6 7 8 9.3 10 12 ...
#> ..$ CPROB: num [1:40] 0.0125 0.0375 0.0625 0.0875 0.1125 ...
#> ..$ COLOR: chr [1:40] "#FFFF00" "#F8F806" "#F1F10C" "#EBEB13" ...
#> $ CRFVOL :'data.frame': 40 obs. of 4 variables:
#> ..$ MIN : num [1:40] 0 0.1 0.3 0.4 0.6 0.8 1 1.2 1.5 1.8 ...
#> ..$ MAX : num [1:40] 0.1 0.3 0.4 0.6 0.8 1 1.2 1.5 1.8 2.2 ...
#> ..$ CPROB: num [1:40] 0.408 0.41 0.411 0.416 0.418 0.504 0.506 0.513 0.514 0.558 ...
#> ..$ COLOR: chr [1:40] "#FFFF00" "#FDF800" "#FBF100" "#F9EB00" ...
#> $ TAXOUSDA:'data.frame': 74 obs. of 4 variables:
#> ..$ Number : int [1:74] 0 1 2 3 5 6 7 10 11 12 ...
#> ..$ Group : Factor w/ 75 levels "","Albolls","Anthrepts",..: 39 50 47 38 35 54 41 28 26 34 ...
#> ..$ Generic: Factor w/ 17 levels "","Alfisols",..: 11 14 13 8 6 6 6 7 7 7 ...
#> ..$ COLOR : chr [1:74] "#1414FF" "#D2D2D2" "#FFB9B9" "#F5F5F5" ...
#> $ TAXGWRB :'data.frame': 32 obs. of 4 variables:
#> ..$ Number: int [1:32] 1 2 3 4 5 6 7 8 9 10 ...
#> ..$ Code : Factor w/ 32 levels "AB","AC","AL",..: 2 1 3 4 6 5 8 9 7 10 ...
#> ..$ Group : Factor w/ 32 levels "Acrisols","Albeluvisols",..: 1 2 3 4 5 6 7 8 9 10 ...
#> ..$ COLOR : chr [1:32] "#FDA463" "#FFEBBE" "#FFFFCC" "#FC6B5D" ...
#> $ TAXNWRB :'data.frame': 118 obs. of 5 variables:
#> ..$ Number : int [1:118] 1 2 3 4 5 6 7 8 9 10 ...
#> ..$ Group : Factor w/ 118 levels "Acric Ferralsols",..: 28 29 30 31 104 116 32 84 111 18 ...
#> ..$ Shortened_name: Factor w/ 118 levels "Acric.Ferralsols",..: 28 29 30 31 104 116 32 84 111 18 ...
#> ..$ Generic : Factor w/ 30 levels "Acrisols","Albeluvisols",..: 1 1 1 1 1 1 2 2 2 3 ...
#> ..$ COLOR : chr [1:118] "#FE813E" "#FD9F39" "#FDAE6B" "#FD8D3C" ...

which illustrates the referent cumulative probabilities (CPROB) and appropriate color legend (COLOR;
coded as a six-digit, three-byte hexadecimal number) for the values of the target soil variables.
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The cumulative probabilities were derived using the collection of records in the WoSIS repository
(Batjes et al, 2017), and can be considered as an estimate of global prior probabilities for soil pH
(see further Fig. 3.7).

A general intention is to maintain a Global Soil Data Registry so that a short variable name (in
further text “variable code”) can be linked to a unique set of metadata which should include:

• Full description (text);

• Variable type (numeric, quantity, binary, factor etc);

• Determination / measurement method (unique code);

• Measurement unit (following the International System of Units);

• Biblio reference (URL or DOI);

• ISO code (if available);

• Physical limits (lower / upper);

• Detection limit (i.e. numeric resolution);

• Priority level (required, suggested or optional);

Note that MySQL has some restrictions considering column names: special characters, such as
those outside the set of alphanumeric characters from the current character set, can not be used
in the column names. Proposed abbreviations for standard method names are VOL — volume
fraction, ABU — abundance or relative area cover, PCT — mass percentage, ICM — thickness in
cm, MHT — texture by-hand or manual hand texture and MNS — Munsell color codes, horizon
sequence is coded with the capital ASCII letters e.g. A, B, C,… Z. Another option is to simply use
the US Goverment National Cooperative Soil Characterization Database column names (http:
//ncsslabdatamart.sc.egov.usda.gov/).

Also note that the metadata can be easily separated from the code so that the short codes (vari-
able name) can be used as a shorthand (replacement) for the long description of the complete
metadata. Using short codes is also important for programming because unique code names are
used consistently in all scripts / functions.

3.2 Descriptive soil profile observations

3.2.1 Depth to bedrock

Soil depth (specifically depth to bedrock) is predicted because it is an important consideration for
a wide variety of engineering, hydrological and agronomic interpretations. Shallow and lithic soils
are of particular interest as they impose restrictions for foundations and structures in engineering,
limit infiltration and storage of moisture and produce more rapid runoff and erosion and limit
growth of many crops by restricting rooting depth and limiting available moisture storage. Most
soil legacy profile data do not provide any information about the soil below depths of 1 m (Richter

http://ncsslabdatamart.sc.egov.usda.gov/
http://ncsslabdatamart.sc.egov.usda.gov/
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and Markewitz, 1995). This characteristic of legacy soil data limits its usefulness for predicting
soil depths greater than 2 m.

Soil depth is measured from the soil surface downwards and expressed in positive values increasing
with depth. Google Earth and the KML data standard (via the altitudeMode tag) allow one to
specify if the vertical dimension refers to actual altitude (vertical distance from the land surface)
or to distance from the sea level (absolute). In this case soil depths can be represented using
clampToGround and negative values. For example, a depth of 30 cm can be expressed as (Wilson,
2008):

<Placemark> <Point>
<altitudeMode>clampToGround</altitudeMode>
<coordinates>17.2057,45.8851,-0.3</coordinates>
</Point> </Placemark>

Soil surface (depth = 0 cm) is the top of the mineral soil; or, for soils with a litter layer (O horizon),
the soil surface is the top of the part of the O horizon that is at least slightly decomposed (FAO,
2006). Fresh leaf or needle fall that has not undergone observable decomposition is not considered
to be part of the soil and may be described separately. For organic soils, the top of any surface
horizon identified as an O horizon is considered the soil surface.

The depth to bedrock i.e. depth to the R horizon is measured from the soil surface downwards and is
expressed in cm with a precision of ±1 cm. Depth to bedrock deeper than e.g. 2–3 m is most often
not recorded. Bedrock is consolidated hard rock, with only a few cracks, underlying the soil. It is
not necessarily parent material. We imagine it often as something distinct and easy to recognize
in the field. In practice, depth to bedrock can be difficult to determine, and is often confused with
stoniness or depth to parent material (which can be unconsolidated material). Another issue is
that, for most of the soils in the world, hard bedrock is >2 m deep so that we actually don’t know
the correct depth to enter, other than >2 m. Rootability is physically restricted by the bedrock,
whether hard or soft (see Fig. 3.4).
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Fig. 3.4 Depth to bedrock for censored and uncensored observations. Image source: Shangguan et al. (2017)
doi: 10.1002/2016MS000686.

In traditional soil characterisation, the total depth of the O, A, E, and B horizons is referred to as
the solum (Harpstead et al, 2001), while the underlaying layer is referred to as parent material or
substratum (Soil survey Division staff, 1993). Parent material can be coarse or fine unconsolidated
deposits of e.g. alluvial, colluvial or windblown origin (C horizon) or consolidated residual hard
bedrock (R horizon).

Depth to bedrock is the mean distance to R horizon (layer impenetrable by roots or agricultural
machinery). Depth to bedrock deeper than 2 m is most often not recorded in field survey descrip-
tions.

3.2.2 Effective soil depth and rooting depth

Effective soil depth is of interest for soil mapping because it is a key indicator of the capability
of the soil to store moisture, support crop growth and sustain beneficial land uses. It is often an
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Table 3.2 Summary of maximum rooting depth by biome (after Canadell et al. (1996)). MMRD = Mean
maximum rooting depth in m; HVRD = Highest value for rooting depth in m.

Biome N MMRD HVRD
Boreal Forest 6 2.0 ± 0.3 3.3
Cropland 17 2.1 ± 0.2 3.7
Desert 22 9.5 ± 2.4 53.0
Sclerophyllous shrubland and forest 57 5.2 ± 0.8 40.0
Temperate coniferous forest 17 3.9 ± 0.4 7.5
Temperate deciduous forest 19 2.9 ± 0.2 4.4
Temperate grassland 82 2.6 ± 0.2 6.3
Tropical deciduous forest 5 3.7 ± 0.5 4.7
Tropical evergreen forest 5 7.3 ± 2.8 18.0
Tropical savanna 15 15.0 ± 5.4 68.0

essential indicator of soil health. The effective soil depth is the depth to which micro-organisms
are active in the soil, where roots can develop and where soil moisture can be stored (FAO, 2006).

There are many thoughts on how to define effective soil depth. Effective soil depth is closely
related to, but not necessarily equivalent to, the rooting depth. Rooting depth is measured and
reported relative to a specific prevailing land cover and land use category, while effective soil depth
is supposedly the maximum possible depth of soil that can be used by any growing plant (see Tbl.
3.2).

In some cases soil ends with an abrupt change of material which is either solid, compacted or
distinctly impenetrable for plants and organisms living in soil. The root restricting i.e. plant
accessible depth, is the depth at which root penetration is strongly inhibited because of physical
(including soil temperature), chemical or hydrological characteristics (Soil survey Division staff,
1993, p.60). Restriction means the inability to support more than a very few fine (or few very fine
roots) if depth from the soil surface and water state, other than the occurrence of frozen water,
are not limiting. For some crops like cotton plants or soybeans, and possibly other crops with
less abundant roots than the grasses, the “very few” class is used instead of the “few” class. The
restriction may be below where plant roots normally occur because of limitations in water state,
temperatures, or depth from the surface. This evaluation can be based on the specific plants that
are important to the use of the soil, as indicated in Tbl. 3.2; see also Soil survey Division staff
(1993, p.60).

Root restriction can be also influenced by certain pedogenic horizons, such as fragipans. A change
in particle size distribution alone, as for example loamy sand over gravel, is not always a basis
for physical root restriction. A common indication of physical root restriction is a combination of
structure and consistence which together suggest that the resistance of the soil fabric to root entry
is high and that vertical cracks and planes of weakness for root entry are absent or widely spaced.
Root restriction is inferred for a continuously cemented zone of any thickness; or a zone >10 cm
thick that when very moist or wet is massive, platy, or has weak structure of any type for a vertical
repeat distance of >10 cm and while very moist or wet is very firm (firm, if sandy), extremely firm,
or has a large penetration resistance. Chemical restrictions, such as high extractable aluminium,
manganese and/or low extractable calcium, can also be considered but are plant-specific. Root-
depth observations preferably should be used to make the generalization. If these are not available
then inferences may be made from soil morphology.
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As a general recommendation, it is advisable to focus first on mapping soil properties that limit
rooting, including content of coarse fragments and the depth to bedrock, and then define effective
soil depth a posteriori using distinct analytical rules. A similar approach has also been promoted
by Rijsberman and Wolman (1985) and Driessen and Konijn (1992) who refer to it as the Soil-
productivity Index — a product of soil-water sufficiency, soil pH sufficiency and soil bulk density
sufficiency. Here we consider a somewhat wider range of soil properties that can affect rooting
depth, such as:

• coarse fragments,

• compaction / porosity (possibly derived from structure and consistence),

• drainage i.e. soil oxygen availability,

• toxicity e.g. Al content,

• acidity, salinity and similar.

In-field expert interpretation explicitly summarising observations into a single expression for root-
ing depth is likely the most effective and reliable source of information. The genetically determined
maximum rooting depth of vegetation isn’t always a reliable indicator of actual observed effective
rooting depth of a given soil at a given site (Fig. 3.5). Possibly a more robust way to determine the
effective rooting depth is to map all limiting soil properties with high accuracy, and then derive
rooting index per layer.
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Fig. 3.5 Derivation of the Limiting Rooting Index: (left) soil pH values and corresponding LRI, (right) coarse
fragments and corresponding LRI. Based on Leenaars et al. (2018) doi: 10.1016/j.geoderma.2018.02.046.

By using the GSIF package, one can determine Limiting Rooting Index, which can be a good
indicator of the effective rooting depth. Consider the following soil profile from Nigeria (Leenaars,
2014):



88 3 Soil observations and variables

## sample profile from Nigeria (ISRIC:NG0017):
UHDICM = c(0, 18, 36, 65, 87, 127)
LHDICM = c(18, 36, 65, 87, 127, 181)
SNDPPT = c(66, 70, 54, 43, 35, 47)
SLTPPT = c(13, 11, 14, 14, 18, 23)
CLYPPT = c(21, 19, 32, 43, 47, 30)
CRFVOL = c(17, 72, 73, 54, 19, 17)
BLD = c(1.57, 1.60, 1.52, 1.50, 1.40, 1.42)*1000
PHIHOX = c(6.5, 6.9, 6.5, 6.2, 6.2, 6.0)
CEC = c(9.3, 4.5, 6.0, 8.0, 9.4, 10.9)
ENA = c(0.1, 0.1, 0.1, 0.1, 0.1, 0.2)
EACKCL = c(0.1, 0.1, 0.1, NA, NA, 0.5)
EXB = c(8.9, 4.0, 5.7, 7.4, 8.9, 10.4)
ORCDRC = c(18.4, 4.4, 3.6, 3.6, 3.2, 1.2)
x <- LRI(UHDICM=UHDICM, LHDICM=LHDICM, SNDPPT=SNDPPT,

SLTPPT=SLTPPT, CLYPPT=CLYPPT, CRFVOL=CRFVOL,
BLD=BLD, ORCDRC=ORCDRC, CEC=CEC, ENA=ENA, EACKCL=EACKCL,
EXB=EXB, PHIHOX=PHIHOX, print.thresholds=TRUE)

x
#> [1] TRUE TRUE TRUE TRUE TRUE TRUE
#> attr(,"minimum.LRI")
#> [1] 35.0 29.5 47.0 54.5 73.0 61.5
#> attr(,"most.limiting.factor")
#> [1] "tetaS" "tetaS" "tetaS" "tetaS" "tetaS" "tetaS"
#> attr(,"thresholds")
#> attr(,"thresholds")$ERscore1
#> [1] 100.0 80.0 50.0 0.0 95.0 40.0 40.0 5.5 7.8 1.5 10.0
#> [12] 1.0 35.0 2.5 150.0 150.0
#>
#> attr(,"thresholds")$ERscore2
#> [1] 0.00 90.00 30.00 0.35 100.00 60.00 60.00 3.62 9.05 6.75
#> [11] 25.00 5.00 85.00 6.50 750.00 750.00
#>
#> attr(,"thresholds")$Trend
#> [1] 0 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1
#>
#> attr(,"thresholds")$Score
#> [1] 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
#>
#> attr(,"thresholds.names")
#> attr(,"thresholds.names")$variable
#> [1] "range" "CRFVOL" "tetaS" "BLD.f" "SNDPPT" "CLY.d"
#> [7] "SND.d" "PHIHOX.L" "PHIHOX.H" "ECN" "ENA.f" "ENA"
#> [13] "EACKCL.f" "EACKCL" "CRB" "GYP"
## Most limiting: BLD.f and CRFVOL, but nothing < 20
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where UHDICM and LHDICM are the upper and lower horizon depth in cm, SNDPPT, SLTPPT and CLYPPT are
the sand, silt and clay content in percent, CRFVOL is the volume percentage of coarse fragments (>2
mm), BLD is the bulk density in t/m3, ORCDRC is the soil organic carbon concentration in permille or
g/kg, ECN is the electrical conductivity in dS/m, CEC is the Cation Exchange Capacity in cmol/kg
(centi-mol per kilogram), ENA is the exchangable Na in cmol/kg, EACKCL is the exchangeable acidity
in cmol/kg, EXB is the exchangeable bases in cmol/kg, PHIHOX is the soil pH in water suspension, CRB
is the CaCO3 (carbonates) in g/kg, GYP is the CaSO4 (gypsum) in g/kg, and tetaS is the volumetric
percentage of water.
For this specific profile, the most limiting soil property is tetaS, but because none of the soil
properties got <20 points, we can conclude that the maximum rooting depth is >180 cm. Note
that the threshold values in the LRI function used to derive Limiting Rootability scores are set
based on common soil agricultural productivity tresholds (e.g. for maize; see also Fig. 3.5), and can
be adjusted via the thresholds argument. The computation is done per list of soil layers (minimum
three) to account for textural changes i.e. sudden changes in sand and clay content and for the
limiting layers such as layer saturated with water. To determine further the effective rooting depth
we can run:

sel <- x==FALSE
if(!all(sel==FALSE)){
UHDICM[which(sel==TRUE)[1]]

} else {
max(LHDICM)

}
#> [1] 181

xI <- attr(x, "minimum.LRI")
## derive Effective rooting depth:
ERDICM(UHDICM=UHDICM, LHDICM=LHDICM, minimum.LRI=xI, DRAINFAO="M")
#> [1] 100

3.3 Chemical soil properties

3.3.1 Soil organic carbon

Organic carbon is a soil property of great current global interest (Smith et al, 2004; Pete Smith
and Kutsch, 2010; Panagos et al, 2013). It is commonly recognized and used as a key indicator
of soil health. The amount of carbon present in the soil, and particularly in topsoil horizons,
is grossly indicative of potential productivity for crops. Amounts of organic carbon throughout
the profile influence soil structure, permeability, porosity, bulk density, water holding capacity,
nutrient retention and availability and, consequently, overall soil health. The ability of soils to
sequester significant quantities of atmospheric carbon is of considerable interest as a potential
mechanism for mitigating the adverse effects of increases in green house gasses in the atmosphere
(Smith et al, 2004; Conant et al, 2010; Scharlemann et al, 2014). Consequently, soil organic carbon
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is probably the soil property of greatest current interest and utility from the point of view of global
mapping, and interpretation, of soil properties.

Soil Organic Carbon is one of the key measures of soil health. The standard reference method for
assessing and reporting soil organic carbon content of the fine earth fraction is by dry combustion
to at least 1000°C (ISO 10694). Values of organic carbon content are typically reported in permilles
(0–1000) with integer precision.

The dry combustion method (Leco at 1000°C) is based on thermal oxidation of both mineral carbon
(IC) and organic carbon by means of a furnace. It is a reliable method for the determination of
the soil organic carbon when IC is removed through combustion at low temperature prior to
combustion at high temperature. Dry combustion is considered to ensure oxidation of all organic
carbon, and is considered an accurate method which has been used in many studies as a reference
method against which to calibrate other methods (Grewal et al, 1991; Meersmans et al, 2009;
Bisutti et al, 2004). A global estimate of the probability distribution of soil organic carbon is
shown in Fig. 3.6.

 

 

Fig. 3.6 Histogram and soil-depth density distribution for a global compilation of measurements of soil or-
ganic carbon content (ORCDRC) in permilles. Based on the records from WOSIS (http://www.earth-syst-sci-
data.net/9/1/2017/). The log-transformation is used to ensure close-to-normal distribution in the histogram.

Total organic carbon can be determined directly or indirectly. Direct determination includes re-
moval of any carbonates present by treating the soil with hydrochloric acid. Indirect determination
consists of applying an empirical correction to the total carbon content to account for the inorganic
carbonates present.

Examples of studies that have used dry combustion for calibrating other methods of analyzing
organic carbon include Kalembasa and Jenkinson (1973; Grewal et al, 1991; Soon and Abboud,
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1991; Wang et al, 1996; Konen et al, 2002; Brye and Slaton, 2003; Mikhailova et al, 2003; Bisutti
et al, 2004; Jankauskas et al, 2006; De Vos et al, 2007) and Meersmans et al (2009). It is possible
to produce regression equations to permit conversion of results for organic carbon produced by
one method into equivalent values into a specified reference method (generally dry combustion).
However, local calibration equations that reflect differences in soils on a regional basis are usually
needed. It is not possible to provide a single universal equation suitable for use everywhere to
convert organic carbon values produced using other methods of analysis to equivalent values in
the reference method of dry combustion.

3.3.2 Soil pH

Soil pH is of interest for global soil mapping because it is one of the more widely available and
easily interpreted chemical measures of the health and productivity of the soil. pH provides an
indication of base status of the soil which influences nutrient availability, mobility of both ben-
eficial and detrimental ions and the ecology of micro-organisms within the soil. For most crops
and agricultural uses, a pH in the range of 5.5 to 7.5 is optimal (considering the agricultural
productivity of soil). Low pH is associated with acidic conditions and with increased mobility of
toxic ions such as aluminium iron and even acid sulphates. High pH is associated with reduced
availability of phosphorus and at higher levels with alkaline conditions that impede water uptake
by plants. A global estimate of the distribution of the soil pH is shown in Figs. 3.7 and 3.8.

PH index approximates concentration of dissolved hydrogen ions (H3O+) in a soil suspension. It is
estimated as the negative decimal logarithm of the hydrogen ion activity in a soil suspension. As
a single measurement, pH describes more than relative acidity or alkalinity. It also provides infor-
mation on nutrient availability, metal dissolution chemistry, and the activity of microorganisms
(Miller and Kissel, 2010).
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Fig. 3.7 Histogram and soil-depth density distribution for a global compilation of measurements of soil pH
(suspension of soil in H2O). Based on the records from WOSIS (http://www.earth-syst-sci-data.net/9/1/2017/).

 

 

Fig. 3.8 Histogram and soil-depth density distribution for a global compilation of measurements of soil pH
(suspension of soil in KCl). Based on the records from WOSIS (http://www.earth-syst-sci-data.net/9/1/2017/).
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The standard reference method for reporting pH is ISO 10390:2005. This standard specifies an
instrumental method for the routine determination of pH using a glass electrode in a 1:5 (volume
fraction) suspension of soil in water (pH in H2O), in potassium chloride solution (pH in KCl) or
in calcium chloride solution (pH in CaCl2).
The most common method for analyzing pH in North America is a 1:1 soil/water suspension (Miller
and Kissel, 2010). Adopting ISO 10390:2005 as a standard with its specification of pH measured
in a 1:5 suspension of soil in water requires US values to be converted from 1:1 soil/water to 1:5
soil/water equivalent values.
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Fig. 3.9 Histogram for soil pH and connected color legend available via the GSIF package. Color breaks in the
legend have been selected using histogram equalization (i.e. by using constant quantiles) to ensure maximum
contrast in the output maps.

The ratio of soil to water in a suspension has a net effect of increasing the pH with a decrease in
the soil/water ratio. Davis (1943) has shown that decreasing the soil/water ratio from 10:1 to 1:10
resulted in an increase of 0.40 pH units. Values for pH computed using methods with a lower ratio
of soil to water (e.g. 1:1 or 1:2.5) will generally be lower than equivalent values for pH in 1:5 water.
Several authors have demonstrated that fitting quadratic or curvilinear functions to soil pH data
produces regression equations with higher coefficients of determination than those obtained from
a linear fit (Aitken and Moody, 1991; Miller and Kissel, 2010). For example, Brennan and Bolland
(1998) have estimated that (at least in Southwestern Australia) pH in CaCl2 can be estimated
from the pH 1:5 water by using a simple conversion:
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ph_h2o = 7.2
0.918*ph_h2o-0.3556
#> [1] 6.25

This model fitted explains 94% of variation in the values of pH CaCl2 (R-square=0.9401).

Soil pH is negative decimal logarithm of the hydrogen ion activity in a soil suspension. Soil pH
values are usually in the range 3–11, and are recorded with a precision of ±0.1. Soil pH in the
range of 5.5 to 7.5 is optimal for growing crops.

Soil pH varies with season and soil moisture content, with higher pH values associated with wetter
soils and winter conditions and lower pH values with drier soils and summer conditions (Miller and
Kissel, 2010). The effects of both temporal variation in pH and variation due to different analytical
methods means that differences in pH of less than some specified range (e.g. ±0.3 units) may not
be meaningful in the context of predictions made using noisy legacy soils data analyzed using a
variety of different analytical methods. Consequently, it is not necessary or beneficial to report
pH with a precision greater than ±0.1 unit. Natural variation of pH in soils is over a range of
2–11 with a standard deviation of 1.4. Note also that pH follows a close-to-normal distribution,
although it is often argued that, locally, it can show bimodal or even trimodal peaks (Fig. 3.9).

3.3.3 Soil nutrients

Nutrients are chemical elements or substances essential for the growth of plants. The most essential
elements important for the growth of plants are carbon, hydrogen and oxygen. Other essential
elements can be separated into macro-nutrients (>100 𝜇g or >100 ppm) and micro-nutrients
(<100 ppm), although there is no strict border between the two (Harpstead et al, 2001; Hengl
et al, 2017b). Some macro-nutrients of global importance for soil management and protection are
(http://en.wikipedia.org/wiki/Plant_nutrition):

• Nitrogen (N) — Nitrogen is often considered synonymous with soil fertility. Controls leafy
growth. Occurs in soil as nitrates (e.g. NO3, NO2).

• Phosphorus (P) — High phosphorus deficiency may result in the leaves becoming denatured
and showing signs of necrosis. Occurs in the form of phosphates.

• Potassium (K) — Potassium deficiency may result in higher risk of pathogens, wilting, chlorosis,
brown spotting, and higher chances of damage from frost and heat.

• Sulfur (S) — Symptoms of deficiency include yellowing of leaves and stunted growth. Occurs
in soil in the form of sulfate salts (SO4).

• Calcium (Ca) — Calcium is involved in photosynthesis and plant structure. Calcium deficiency
results in stunting. Occurs in the form of calcium carbonates (CaCO3).

http://en.wikipedia.org/wiki/Plant_nutrition
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• Magnesium (Mg) — Magnesium is also an important part of chlorophyll. Magnesium deficiency
can result in interveinal chlorosis.

Nitrogen, Phosphorus and Potassium are the three relatively mobile and dynamic nutrients in soil
that are most often lacking and hence have been identified of primary interest for the fertilizer
industry. Other micro-nutrients of interest for global soil mapping would be: Iron (Fe), Zinc (Zn),
Manganese (Mn), Copper (Cu), Boron (B), Chlorine (Cl), Molybdenum (Mo), Nickel (Ni) and
Sodium (Na).

Apart from macro- and micro-nutrients important for plant growth, there is an increasing interest
in the distribution of heavy metals in soils, especially ones that are considered toxic or dangerous
for human health. Some common heavy metals of interest for soil management and soil protection
in developed industrial and / or developing countries are Lead (Pb), Arsenic (As), Zinc (Zn),
Cadmium (Cd), Nickel (Ni), Copper (Cu), and Aluminium (Al) (Markus and McBratney, 2001;
Reimann et al, 2011; Morel et al, 2005; Rodríguez-Lado et al, 2013; Hengl et al, 2017b).

Macro- and micro-nutrients and heavy metals are measured and mapped in parts per million or 𝜇g
per kg of soil. The AfSIS project, provides a good example of mapping macro- and micro-nutrients
over a large area (Hengl et al, 2017b). The problem with mapping such chemical soil properties,
however, is that they are highly dynamic. For example, nitrogen, phosphorus, and potassium are
highly mobile nutrients. Their concentration changes from month to month, even from day to day
so that space-time models (2D-T or 3D-T) need to be developed and the amount of analysis /
storage needed can easily escalate.

3.4 Physical and hydrological soil properties

3.4.1 Coarse fragments

Soil texture is connected with soil granulometry or the composition of the particle sizes, typically
measured as volume percentages. The most common subdivision of soil granulometry is (Shirazi
et al, 2001):

1. Fine earth (<2 m)

1.1 sand (coarser particles in the fine earth),

1.2 silt (medium size particles),

1.3 clay (fine particles <2 𝜇m),

2. Coarse fragments (>2 mm)

2.1 gravel (2 mm to 8 cm),

2.2 stones or boulders (>8 cm),
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Coarse fragments occupy volume in the soil matrix, reducing water and nutrient availability as well
as influencing rooting depth and workability. We elect to produce maps of coarse fragment content
because many assessments, such as total stocks of carbon or available water, are volumetric based
and require knowledge of the volume of non-soil materials throughout the profile. This information
is required to support calculations of the total volume of the fine earth fraction that is available
to hold water or retain organic carbon. Without some estimate of the volume of the soil occupied
by solid particles larger than 2 mm, it would not be possible to compute volumetric estimates of
stocks of soil carbon or available moisture for fine earth soil.

Coarse fragments include stones as well as gravel (hard and soft nodules) and the attribute is
defined as consisting of all mineral particles with a size exceeding 2 mm. Coarse fragment content
is most commonly expressed in volume fraction (volume percentage) of the horizon, layer or
sample considered. Laboratory analyses tend to be applied to the fine earth fraction of the soil
only and commonly omit consideration of the coarse fragment content. Data for coarse fragment
content are generally derived from descriptive field observations on soil layer morphology. Those
descriptions generally express the content of coarse fragments by class values or categories as for
example ‘frequent stones’ indicating an estimated volumetric content of 15–40% according to the
FAO guidelines of 1977 (similar to ‘many stones’ according to SOTER conventions and the FAO
guidelines of 2006). Because coarse fragment content is most frequently based on generalized visual
field estimates, and is often lacking in legacy soil descriptions, it is not reasonable to predict or
present estimates of coarse fragment content with a precision greater than 1–5%.

Note that the uncertainty associated with coarse fragment content, propagated from the field
observed class values, has significant impact on estimations of the volumetric totals of attributes
assessed and mapped for the fine earth fraction (see also chapter 7). Whilst a 1 meter deep soil,
with a bulk density of 1.5 tonne per cubic-metre and an organic carbon content of 10 g per kg,
contains 150 tonnes organic carbon, a similar soil with bulk density adjusted for the presence of
‘frequent stones’ contains only 90–127.5 tonnes organic carbon. Despite the inaccuracy of the data
for field observed coarse fragments content, it is strongly recommended to collect and compile these
data as completely as possible because of their relevance for estimating whole soil bulk density,
total volume and volume of the fine earth fraction alone.

The possible nature (and size) of coarse fragments is highly variable (quartz, carbonate, iron,
basalt) with consequent variable manageability and variable characteristics such as breakability,
solubility, bulk density, etc. Where the coarse fragment content is dominant (>80%), approaching
100%, rootability is near nil which is a determinant for the rooting or effective soil depth and
generally also for depth to bedrock. An estimated global distribution of coarse fragments and soil
textures is given in Fig. 3.10.
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Fig. 3.10 Histogram and soil-depth density distribution for a global compilation of measurements of coarse
fragments in percent. Based on the records from WOSIS (http://www.earth-syst-sci-data.net/9/1/2017/). This
variable in principle follows a zero inflated distribution.

3.4.2 Particle size class distribution: sand, silt and clay

The majority of global soil mapping initiatives elect to predict the spatial distribution of particle
size classes (soil texture) because texture controls or influences many mechanical, hydrological and
engineering aspects of use of the soil. Soil texture affects how a soil responds to engineering uses
such as construction of roads, buildings, dams and other structures, how water infiltrates into the
soil and is stored or transmitted through it, how nutrients, chemicals and dissolved substances
adhere to surfaces and are retained or transformed and how energy and matter enter into the soil
and are stored or transmitted through it. Texture is the fundamental physical and mechanical
property of soils and, as such, it is one of the most widely analysed and widely reported soil
properties.

The size of particles in the soil varies greatly from less than a 2 𝜇m to several cm’s and occasionally
even meters (boulders). This represents a range from 1 𝜇m to 1 million 𝜇m. Generally, particle
size distribution has been simplified through aggregation or classification. The fine earth fraction
(<2 mm) is the soil considered for laboratory analyses. This fine earth is further subdivided into
particle size classes including, depending on the guidelines or laboratory concerned, fine and coarse
clay, fine and coarse silt and very fine, fine, medium, coarse and very coarse sand. The three major
particle size classes of the fine earth fraction though are sand, silt and clay. They are generally
reported in units of percent by weight with a precision of ±1%.

Soil texture represents the relative composition of sand, silt, and clay in soil. The particle-size
class distribution is usually represented in a texture diagram, relating the percentages of sand,
silt, and clay (mass percentage of fine earth) to a texture class (Minasny and McBratney, 2001).
Particle size distribution has been defined using a number of systems. One of the most widely used
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systems is the USDA Soil Survey Laboratory Methods Manual (Natural Resources Conservation
Service, 2004). The USDA definition of particle size classes has also been recommended by FAO
for use in the Soil Map of the World (Fig. 3.11). The standard reference method for reporting
particle size classes of sand, silt and clay, is as per the USDA Soil Survey Laboratory Methods
Manual (Natural Resources Conservation Service, 2004, p.347). An estimated global distribution
of sand, silt, and clay is given in Figs. 3.12, 3.13 and 3.14.

 

 

Fig. 3.11 Particle size limits used in European countries, Australia and America. Image source: Minasny and
McBratney (2001) doi: 10.1071/SR00065.
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Fig. 3.12 Histogram and soil-depth density distribution for a global compilation of measurements of sand
content in percent. Based on the records from WOSIS (http://www.earth-syst-sci-data.net/9/1/2017/).

 

 

Fig. 3.13 Histogram and soil-depth density distribution for a global compilation of measurements of silt content
in percent. Based on the records from WOSIS (http://www.earth-syst-sci-data.net/9/1/2017/).
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Fig. 3.14 Histogram and soil-depth density distribution for a global compilation of measurements of clay content
in percent. Based on the records from WOSIS (http://www.earth-syst-sci-data.net/9/1/2017/).

The current standard for particle size classes adopted by FAO for use in the Harmonized World
Soil Database is ISO 10390:2005. This standard differs from the USDA definition in defining the
size range for silt as 2–63 𝜇m instead of 2–50 𝜇m and sand as 63–2000 𝜇m instead of 50–2000 𝜇m.
This is a relatively new standard for FAO which previously adopted the USDA definitions for the
digital soil map of the world (Nachtergaele et al, 2010). These differences in attribute definition
cause differences in values reported for soil particle size classes. Differences in values can also arise
because of differences in method of analysis (e.g. hygrometer, pipette, laser diffraction, dispersion
etc). Most literature on harmonization of soil texture data deals with harmonizing differences in
attribute definitions or the reported particle size classes (Fig. 3.11).

The most commonly used standard for designation of fine earth texture fractions, used by the
GlobalSoilMap project, is the USDA system (sand: 50–2000 𝜇m, silt: 2–50 𝜇m, clay: <2 𝜇m).

Minasny and McBratney (2001) identified two major textural classifications in the world as the
International and USDA/FAO systems (Tbl. 3.3). The significant difference between these two was
the choice of a threshold value for differentiating silt from sand of 20 𝜇m for the International and
50 𝜇m for the USDA/FAO systems. The new ISO/FAO standard adds an additional difference by
changing the threshold value between silt and sand from 50 𝜇m to 63 𝜇m. Another very important
difference in attribute definition concerns the Russian system which defines the clay fraction as
<1 𝜇m and the fine earth fraction, or the upper limit of the sand fraction, at 1 cm instead of 2
cm.

Both Nemes et al (1999b) and Minasny and McBratney (2001) investigated options for harmonizing
values for sand, silt and clay reported using different systems for classifying particle size fractions.
Using a compilation of four large databases consisting of a total of 1620 samples, Minasny and
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Table 3.3 Differences between the International, USDA and ISO/FAO particle size classifications.

Fraction International USDA ISO.FAO
clay <2 �m <2 �m <2 �m
silt 2–20 �m 2–50 �m 2–63 �m
sand 20–2000 �m 50–2000 �m 63–2000 �m

McBratney (2001) developed a single multiple linear regression model for converting between silt
fraction based on the international standard of 2–20 𝜇m (𝑃2−20) to the 2–50 𝜇m range of the USDA
standard (𝑃2−50) and vice versa:

⎧{
⎨{⎩

̂𝑃2−50 = −18.3914 + 2.0971 ⋅ 𝑃2−20 + 0.6726 ⋅ 𝑃20−2000

−0.0142 ⋅ 𝑃 2
2−20 − 0.0049 ⋅ 𝑃 2

20−2000

if ̂𝑃2−50 > 0
̂𝑃2−50 = 0.8289 ⋅ 𝑃2−20 + 0.0198 ⋅ 𝑃20−2000 if ̂𝑃2−50 < 0

(#𝑒𝑞 ∶ 𝑃250) (3.1)

where 𝑃20−2000 is the international sand fraction. This conversion is fairly accurate since the model
explains most of the observed variability in the original values (𝑅2=0.823). Together with the
conversion of the silt fraction is the conversion of the sand fraction.

Minasny and McBratney (2001) argued that most countries should consider adopting the particle
size limits and texture classes of the USDA system. They noted that the 2–50 𝜇m particle size
range is usually more useful than the 2–20 𝜇m range for estimating water retention in pedo-transfer
functions and observed that translations from one system into another were relatively easy, given
improved computing power and algorithms.

Nemes et al (1999a; Nemes et al, 1999b) evaluated four different interpolation methods (log-linear
interpolation, fitting a Gompertz curve, spline interpolation, and similarity method) in order to
achieve compatibility of particle-size distributions within the European soil hydraulic database
HYPRES (http://www.macaulay.ac.uk/hypres/). They introduced a new similarity procedure,
which uses an external reference data set that contains a wide variety of reference soil materials,
each with 7 or 8 measured particle-size fractions. The procedure involves searching for soil sam-
ples in the external reference data set that match the particle-size distribution of the soil to be
interpolated. From each search. 10 similar soils are selected that have fractions at the particle size
limits similar to the soil under investigation. The arithmetic mean of the fractions of these 10 soils
at the specified particle size limit is calculated and assigned as the estimate of the fraction for the
soil under investigation.

The HYPRES reference database and the similarity procedures applied to it are appropriate for
harmonizing a wide range of soils from a variety of countries and could be used as one of the main
methods in a global Soil Reference Library. The generic nature of this conversion approach, and
the fact that it does not rely on multiple, locally developed, regression equations, makes it an
attractive option for use in harmonization of global particle size data.

http://www.macaulay.ac.uk/hypres/
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3.4.3 Bulk density

Measurement of soil Bulk Density (BLD) is often time consuming and relatively costly. For this
reason, it is not analysed and reported for legacy soil profiles as frequently or consistently as many
other, more common, soil properties. Consequently, predicting bulk density globally using digital
soil mapping methods is fraught with difficulties and uncertainties. However, it is critical to at
least attempt to make some kind of estimate of how bulk density varies spatially because we need
to know the bulk density of the soil in order to make any estimates of volumetric concentrations
of materials such as organic carbon, water or nutrients.

In practice, we need to be able to make estimates of two different types of bulk density, namely the
bulk density of the whole soil and the bulk density of the fine earth fraction (particles <2 mm) only.
Calculations such as those for total stocks of carbon are first applied using the bulk density of the
fine earth fraction only but this value is then reduced in accordance with the volume proportion
of the soil that is occupied by coarse fragments greater than 2 mm in size. Bulk density is also
of interest for global soil mapping applications because it influences infiltration and movement
of water in the soil, penetration of the soil by plant roots and mechanical workability of the soil
using farm implements.

Bulk density is the over-dry mass of soil material divided by the total volume. The standard
reference method for reporting bulk density is the core method (ISO 11272): the dry bulk density
(BD) is the ratio between the mass of oven dry soil material and the volume of the undisturbed
fresh sample. The ISO standard defines dry bulk density as the ratio of the oven-dry mass of the
solids to the volume (the bulk volume includes the volume of the solids and of the pore space) of
the soil. The recommended ISO method (core method) uses steel cylinders of known volume (100
cm3 and/or 400 cm3) that are driven into the soil vertically or horizontally by percussion. Sampling
large volumes results in smaller relative errors but requires heavy equipment. The method cannot
be used if stones or large roots are present or when the soil is too dry or too hard.

For soils with a high stone or root content or when the soil is too dry or too hard, methods based
on the excavation technique are used as an alternative to the core method. In the excavation
method a hole on a horizontal surface is dug and then filled with a material with a known density
(e.g. sand which packs to a calibrated volume or water separated from the soil material by an
elastic membrane) to assess the volume of the hole or the sample taken. The soil obtained from
the hole, is oven-dried to remove the water and the oven-dry mass of the total sample is weighed.
The volumetric percentage of the coarse fragments needs to be determined and the weight of the
coarse fragments assessed, in order to be able to calculate the oven-dry bulk density of the fine
earth separately.

The USDA handbook for analytical procedures describes various methods for assessing various
types of bulk density. USDA soil data report values for bulk density of the fine earth as well
as of the whole earth (including gravel), with the weight assessed oven-dry as well as at field
capacity e.g. including water. The latter method relates the weight of moist soil to the volume
of moist or oven-dry soil. Experience has shown that organic carbon and texture or clay content
predominately influence soil bulk density, even though the nature of the clay (mineralogy) is as
important as the percentage content of the clay. Organic carbon and texture information is often
available in soil survey reports, while bulk density is often not reported.

Many attempts have therefore been made to estimate soil bulk densities through pedo-transfer
functions (PTFs) based on soil organic carbon and texture data (Curtis and Post, 1964; Adams,
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1973; Alexander, 1980; Federer et al, 1993; Rawls, 1983; Manrique and Jones, 1991; Bernoux et al,
1998). Heuscher et al (2005) applied a stepwise multiple regression procedure to predict oven-
dried bulk density from soil properties using the NRCS National Soil Survey Characterization
Data. The database included both subsoil and topsoil samples. An overall regression equation for
predicting oven-dried bulk density from soil properties (𝑅2 = 0.45, 𝑃 < 0.001) was developed
using almost 47,000 soil samples. Further partitioning of the database by soil suborders improved
regression relationships (𝑅2 = 0.62, 𝑃 < 0.001). Of the soil properties considered, the stepwise
multiple regression indicated that organic C content was the strongest contributor to bulk density
prediction (Heuscher et al, 2005). Other significant variables included clay content, water content
and to a lesser extent, silt content, and depth.

Bulk density is the oven-dry mass of soil material divided by the total volume and typically ranges
from 0.7 to 1.8 t/m3. The average bulk density of the fine earth fraction of soil is about 1.3 t/m3;
soils with a bulk density higher than 1.6 t/m3 tend to restrict root growth. Different values for
bulk density typically apply for different soils with different soil genesis as reflected by different
materials and mineralogy, e.g. Histosols (organic), Arenosols (sandy), Andosols (allophanic clay),
Acrisols (low activity clays) and Vertisols (high activity clays).

Bulk density tends to be measured and reported less frequently in legacy data bases and reports
than most other commonly measured soil analytical properties. Bulk density is often based on
field measurements of in-situ bulk density using the core method. Bulk density of the fine earth
fraction alone is measured and reported even less frequently than bulk density for the whole soil
(Fig. 3.15).

 

 

Fig. 3.15 Histogram and soil-depth density distribution for a global compilation of measurements of bulk density
(tonnes per cubic metre). Based on the records from WOSIS (http://www.earth-syst-sci-data.net/9/1/2017/).
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Given that there are more values reported for the bulk density of the whole soil than for the
fine earth fraction, we elect to first estimate the bulk density of the whole soil (using appropriate
pedo-transfer functions) and then apply corrections to estimate the bulk density of the fine earth
fraction, correcting for the effect of course fragments. Correction involves subtracting the volume
of coarse fragments from the total volume of soil sampled for assessing bulk density in-situ in
the field and then also subtracting the (estimated) weight of coarse fragments from the measured
oven-dry weight of the sampled soil.

The revised weight of the fine-earth fraction alone (minus the weight of the coarse fragments)
is divided by the adjusted volume of the sample (reduced by the volume of coarse fragments)
to obtain an estimate of bulk density for the fine earth fraction alone. This value of density of
the fine-earth fraction alone is the one needed to compute estimates of volumetric soil properties,
such as total carbon stocks. It is therefore the critical measure of bulk density for reporting
concentrations of soil chemical properties. Conversely, bulk density of the whole soil, in situ, is
generally of greater use and interest for assessing hydrological behaviours and properties, such as
hydraulic conductivity and moisture holding capacity.

Tranter et al (2007) proposed a conceptual model that incorporated a priori knowledge for pre-
dicting soil bulk density from other, more regularly measured, properties. The model considers
soil bulk density to be a function of soil mineral packing structures (𝜌𝑚) and soil structure (Δ𝜌).
Bulk densities were also observed to increase with depth, suggesting the influence of over-burden
pressure. Residuals from the 𝜌𝑚 model, referred to as Δ𝜌, correlated with organic carbon.

Torri et al (1994) developed a nomogram for transforming rock fragment content from a by-
mass to a by-volume basis and vice versa based on bulk density data. This nomogram facilitates
conversion of data on rock fragment content expressed in different units. Most PTFs for predicting
bulk density, except those developed by Rawls (1983) and Bernoux et al (1998), are a function of
organic matter i.e. organic carbon content. Although studies conducted by Saini (1966) and Jeffrey
(1970) have shown that organic matter has a dominating effect on soil bulk density and that it
can be used alone as a good predictor of soil bulk density, it has been observed (e.g. Alexander
(1980) and Manrique and Jones (1991)) that, where organic matter is a minor component, soil
texture plays a major role in controlling bulk density .

3.4.4 Soil organic carbon stock

Primary soil properties such as organic carbon content, bulk density and coarse fragments can be
further used as inputs for estimation of secondary soil properties which are typically not measured
directly in the field, or laboratory, and need to be derived from primary soil properties. For
instance, consider estimation of the global carbon stock (in permille). This secondary soil property
can be derived from a number of primary soil properties (Nelson and Sommers, 1982; Sanderman
et al, 2018) (see Fig. 3.16):

OCS [kg m−2] = ORC

1000 [kg kg−1] ⋅ HOT

100 [m] ⋅ BLD [kg m−3] ⋅ 100 − CRF [%]
100 (3.2)
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where OCS is soil organic carbon stock, ORC is soil organic carbon mass fraction in permilles, HOT is
horizon thickness in , BLD is soil bulk density in and CRF is volumetric fraction of coarse fragments
(> 2 mm) in percent.

 

1 ha

0–30 cm

Bulk density (BLD):

Organic carbon (ORC):

Coarse fragments (CRF):

Total volume of the block (HOT):

1500 kg / m
3
 (s.d. = ±100)

50‰ (s.d. = ±10)

10% (s.d. = ±5)

30 cm (· 1 ha)

OCS = ORC/1000 · BLD · (100-CRF)/100 · HOT/100

= 1/10,000,000 · ORC · BLD · (100-CRF) · HOT

= 1/10,000,000 · 50 · 1500 kg / m
3
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Soil organic carbon stock (OCS):

= 20.25 kg / m
2
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Soil organic carbon 

stock

Total fine-earth soil

OCS.sd = 1/10,000,000 · HOT · sqrt( BLD
2
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2
 · ORC.sd

2 
+ 

 + BLD.sd
2
 · (100 - CRF)

2
 · ORC

2
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2
 · CRF.sd

2
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2 
)

= 4.4 kg / m
2
 = 44.1 tonnes / ha

 

Fig. 3.16 Soil organic carbon stock calculus scheme. Example of how total soil organic carbon stock (OCS),
and its propagated error, can be estimated for a given volume of soil using organic carbon content (ORC), bulk
density (BLD), thickness of horizon (HOT), and percentage of coarse fragments (CRF). Image source: Hengl et
al. (2014) doi: 10.1371/journal.pone.0169748. OCSKGM function also available via the GSIF package.

The propagated error of the soil organic carbon stock (Eq.(3.2)) can be estimated using the Taylor
series method (Heuvelink, 1998) i.e. by using the standard deviations of the predicted soil organic
carbon content, bulk density and coarse fragments, respectively (Fig. 3.16). OCS values can be
derived for all depths / horizons, then aggregated to estimate the total stock for the whole profile
(e.g. 0–2 m).

The formulas to derive soil organic carbon stock and the propagated uncertainty as implemented
in the GSIF package are e.g.:

Area <- 1E4 ## 1 ha
HSIZE <- 30 ## 0--30 cm
ORCDRC <- 50 ## 5%
ORCDRC.sd <- 10 ## +/-1%
BLD <- 1500 ## 1.5 tonnes per cubic meter
BLD.sd <- 100 ## +/-0.1 tonnes per cubic meter
CRFVOL <- 10 ## 10%
CRFVOL.sd <- 5 ## +/-5%
x <- OCSKGM(ORCDRC, BLD, CRFVOL, HSIZE, ORCDRC.sd, BLD.sd, CRFVOL.sd)
x ## 20.25 +/-4.41 kg/m^2
#> [1] 20.2
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#> attr(,"measurementError")
#> [1] 4.41
#> attr(,"units")
#> [1] "kilograms per square-meter"
x[[1]] * Area / 1000 ## in tonnes per ha:
#> [1] 202

A more robust way to estimate the propagated uncertainty of deriving OCS would be to use geosta-
tistical simulations e.g. derive standard error from a large number of realizations (e.g. >100) that
incorporate spatial and vertical correlations. Because, in the case of soil mapping, we are often
dealing with massive data sets, running geostatistical simulations for millions of pixels is currently
not a feasible option.

3.4.5 Available Water Capacity

The available water holding capacity (AWC) is a complex soil property. It is basically a soil or
land quality (Food et al, 1977), that provides valuable information about the capacity of the
soil to hold water, particularly water that is potentially available for root uptake by plants and
vegetative transpiration (Fig. 3.17). In practice, AWC is land cover specific. The water available
for root uptake depends on the soil properties that determine rootability or rooting depth as
genetically required by the currently active vegetative land cover.
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Fig. 3.17 Example of a soil-water plot. Actual water content can be measured using soil moisture probes i.e.
automated sensor networks.
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The water available for root uptake also depends on the pressure head that the vegetative land
cover can generate or bridge between the pressure in the atmosphere and the pressure in the soil
matrix. E.g. cotton can still extract water at -2500 kPa (pF 4.4) while pepper wilts at -350 kPa (pF
3.5). The ability of a soil to accept and store water has implications beyond simply the capacity
to support plant growth. It also affects how a soil responds to hydrological events such as rainfall,
snowmelt and runoff. Soils that can rapidly absorb and retain significant amounts of rainfall act
as a buffer reducing rapid runoff and flooding. Soils that have a limited ability to accept and store
rainfall contribute to rapid runoff with increased chances of erosion and flooding. Models of crop
growth, runoff, erosion and flooding all have requirements for location-specific information about
available water capacity.

The AWC is expressed in mm (which equals mm water/cm soil depth, or water/soil volume). This
volume of water depends on the volume of soil (influenced by depth interval and by volumetric
gravel content) and the volumetric fraction of water that is contained by the soil between field
capacity and wilting point. AWC is typically reported to a precision of 1 mm and a maximum
range of 0–2000 mm.

Values for AWC are preferably assessed for the fine earth fraction per depth interval and expressed
as volumetric fraction. This value can be corrected for the gravel content of the depth interval and
summed up over the interval. Preferably, the values for volumetric AWC of the fine earth fraction
per depth interval are derived from values for water content at specific water tensions (e.g. at pF
0.1, 2, 2.5, 3, 4.2, 4.5). For pragmatic reasons though the permanent wilting point is set at -1500
kPa (or pF 4.2).

The standard reference method adopted by GSIF and LandGIS for reporting available water
capacity is as per the USDA Soil Survey Laboratory Methods Manual (Natural Resources Conser-
vation Service, 2004, p.137). Calculation of the Water Retention Difference (WRD) is considered
the initial step in the approximation of the available water capacity (AWC). WRD is a calculated
value that denotes the volume fraction for water in the whole soil that is retained between -1500
kPa suction and an upper limit of usually -33 or -10 kPa suction (pF 2.5 or pF 2) (Natural Re-
sources Conservation Service, 2004, p.137). The upper limit (lower suction) is selected so that
the volume of water retained approximates the volume of water held at field capacity. The -33
and -1500 kPa gravimetric water contents are then converted to a whole soil volume basis by
multiplying by the oven dry bulk density of the fine earth fraction (Db33) and adjusting downward
for the volume fraction of rock fragments, if present, in the soil.

Available water capacity (expressed in mm of water for the effective soil depth) can be estimated
based on the Water Retention Difference (WRD) which denotes the volume fraction for water in
the whole soil, including gravel, that is retained between -1500 kPa suction and an upper limit of
33 kPa suction.

“The development of hydraulic PTFs has become an industry” (Minasny, 2007). Results of such
research have been reported widely, including in the USA (Rawls et al, 1991), UK, the Netherlands
(Wösten et al, 1995), and Germany. Research has attempted to correlate particle size distribution,
bulk density and organic matter content with water content at field capacity (FC, 𝜃 at -33 kPa),
permanent wilting point (PWP, 𝜃 at -1500 kPa), and available water content (AWC = FC - PWP)
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(Minasny, 2007). Gijsman et al (2007) reported that “many PTFs for estimating soil hydraulic
properties have been published already” (see overviews by Rawls et al (1991), Timlin et al (1996)
and Wösten et al (2001)). Timlin et al (1996) reported 49 methods and estimated that these cover
only about 30% of the total. Gijsman et al (2007) compared eight methods for all the soil classes
that make up the texture triangle. They went through the triangle in steps of sand, silt and clay
and determined the estimated values of wilting point or lower limit of plant extractable water (LL),
field capacity or the drained upper limit (DUL), and soil saturation (SAT). They finally concluded
that none of the methods were universally good. The best method in the comparison of Gijsman
et al (2007) was Saxton et al (1986), closely followed by Rawls and Brakensiek (1982).

Alterra institute in collaboration with ISRIC validated the PTF developed by Hodnett and
Tomasella (2002) on the basis of the data present in the Africa Soil Profiles database (Leenaars,
2014) to predict tension specific volumetric water content (Wösten et al, 2013) to assess WRD.
Jagtap et al (2004) developed an approach that does not fit a mathematical equation through the
data, but rather compares the soil layer for which the key soil water contents of lower limit (LL),
drained upper limit (DUL), and soil saturation (SAT), have to be estimated with all layers in a
database of field-measured soil-water-retention data. The layer that is most similar in texture and
organic carbon concentration is considered to be the ‘nearest neighbor’ among all the layers in
the database and its soil-water-retention values are assumed to be similar to those that need to
be estimated. To avoid making estimated soil-water-retention values dependent on only one soil
in the database, the six ‘nearest neighbors’ are used and weighted according to their degree of
similarity (Jagtap et al, 2004). This is a non-parametric procedure, in the sense that it does not
assume a fixed mathematical relationship between the physical properties and the water holding
properties of soils. The similarity method to convert soil particle size fraction data proposed by
Nemes et al (1999b; Nemes et al, 1999a) is a direct analogue of this similarity method of Jagtap
et al (2004) for soil hydraulic properties.

Zacharias and Wessolek (2007) identified three different approaches for deriving the WRD from
more easily available parameters as:

1. Point-based estimation methods: estimating the water content of selected matric potentials from
predictors such as the percentage of sand, silt, or clay, the amount of organic matter, or the
bulk density (e.g. Rawls and Brakensiek (1982)).

2. Semi-physical approach: deriving the WRD from information on the cumulative particle size
distribution (Arya and Paris, 1981); theoretically, this approach is based on the similarity
between cumulative particle size distribution and water retention curves. The water contents
are derived from the soil’s predicted pore volume and the hydraulic potentials are derived from
capillarity relationships.

3. Parameter estimation methods: using multiple regression to derive the parameters of an ana-
lytical closed-form equation for describing the WRD, using predictors such as the percentage
of sand, silt, and clay, the amount of organic matter, or the bulk density (e.g. Van Genuchten
(1980; Wösten et al, 1999; Wösten et al, 2013)).

Zacharias and Wessolek (2007) concluded that approach (1) has the disadvantage that it uses a
large number of regression parameters depending on the number of WRD sampling points, which
makes its use in the mathematical modeling more difficult; while for approach (2) very detailed
information about the particle size distribution is required. They therefore preferred use of (3) the
parameter estimation methods.
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Zacharias and Wessolek (2007) also observed that pedo-transfer functions that do not consider
soil organic matter are rare and gave the following examples. Hall et al (1977) developed point-
based regression equations using soil texture and bulk density (only for subsoils) for British soils.
Oosterveld and Chang (1980) developed an exponential regression equation for Canadian soils for
fitting the relationship between clay and sand content, depth of soil, and moisture content. Equa-
tions to estimate the WRC from mean particle diameter and bulk density have been proposed by
Campbell and Shiozawa (1989). Williams et al (1992) analyzed Australian data sets and developed
regression equations for the relationship between soil moisture and soil texture, structure informa-
tion, and bulk density including variants for both the case where there is available information on
soil organic matter and where the soil organic matter is unknown. Rawls and Brakensiek (1989)
reported regression equations to estimate soil water retention as a function of soil texture and bulk
density. Canarache (1993) developed point based regression equations using clay content and bulk
density for Romanian soils. More recently, Nemes et al (2003) developed different PTFs derived
from different scales of soil data (Hungary, Europe, and international data) using artificial neural
network modeling including a PTF that uses soil texture and bulk density only.

Zacharias and Wessolek (2007) developed two different regression equations largely based on the
percentage of sand in a soil as follows:

⎧{{{{{{
⎨{{{{{{⎩

𝜃𝑟 = 0
𝜃𝑠 = 0.788 + 0.001 ⋅ clay − 0.263 ⋅ 𝐷𝑏

ln(𝛼) = −0.648 + 0.023 ⋅ sand + 0.044 ⋅ clay − 3.168 ⋅ 𝐷𝑏
𝑛 = 1.392 − 0.418 ⋅ sand−0.024 + 1.212 ⋅ clay−0.704

if sand < 66.5%

𝜃𝑟 = 0
𝜃𝑠 = 0.890 + 0.001 ⋅ clay − 0.332 ⋅ 𝐷𝑏

ln(𝛼) = −4.197 + 0.013 ⋅ sand + 0.076 ⋅ clay − 0.276 ⋅ 𝐷𝑏
𝑛 = 2.562 − 7 ⋅ 10−9 ⋅ sand + 3.750 ⋅ clay−0.016

if sand > 66.5%

(3.3)

The regression coefficients from these models were almost identical to those reported by Vereecken
et al (1989) (i.e. 𝜃𝑠 = 0.81 + 0.001 ⋅ clay − 0.283 ⋅ 𝐷𝑏) for a different data set, adding further
credibility to their general applicability. Zacharias and Wessolek (2007) recommended using the
PTFs of Vereecken et al (1989) if data on soil organic matter were available.

Empirical equations developed by Williams et al (1992) for the prediction of the constants 𝐴 and
𝐵 in the Campbell function have been widely used in Australia and elsewhere. These regression
equations require particle size distribution, field texture and bulk density inputs as follows:

𝐴 =1.996 + 0.136 ⋅ ln(clay) − 0.00007 ⋅ fsand+
+ 0.145 ⋅ ln(silt) + 0.382 ⋅ ln(TEXMHT) (3.4)

𝐵 = −0.192 + 0.0946 ⋅ ln(TEXMHT) − 0.00151 ⋅ fsand (3.5)

where clay (<0.002 mm), fsilt (0.02–0.20 mm), and sand (0.002–0.02 mm) are expressed in %;
TEXMHT is texture group from 1–6 as defined by Northcote in Peverill et al (1999).

Cresswell et al (2006) demonstrated applicability of the Williams et al (1992) method for French
soils and confirmed that the approach of assuming a Campbell SWC model and empirically pre-
dicting the slope and air entry potential has merit. They concluded that the empirical regression
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equations of Campbell appeared transferable to different data sets from very different geographical
locations. They provided regression equations for all samples and stratified by horizon type that
had R-square values ranging from 0.81 to 0.91.
Cresswell et al (2006) further suggested a strategy for achieving adequate coverage of soil hydraulic
property data for France that included an efficient sampling strategy based on the use of functional
horizons (Bouma, 1989), and a series of reference sites where soil hydraulic properties could be
measured comprehensively. They argued that the functional horizon method recognizes the soil
texture class of the horizon rather than the profile as the individual or building block for prediction
(Wösten et al, 1985; Wösten and Bouma, 1992). A significant feature of this approach is the
capacity to create a complex range of different hydrologic soil classes from simple combinations of
horizon type, sequence, and thickness.
Pedo-transfer functions for available water capacity typically have a general form of:

AWAIMM = 𝑓(organic carbon, sand, silt, clay,bulk density) (3.6)

where the total profile available water (AWAIMM) can be summed over the effective depth.
By using the GSIF package, one can estimate AWAIMM using the pedo-transfer function described
by Hodnett and Tomasella (2002) and Wösten et al (2013):

SNDPPT = 30
SLTPPT = 25
CLYPPT = 48
ORCDRC = 23
BLD = 1200
CEC = 12
PHIHOX = 6.4
x <- AWCPTF(SNDPPT, SLTPPT, CLYPPT, ORCDRC, BLD, CEC, PHIHOX)
str(x)
#> 'data.frame': 1 obs. of 5 variables:
#> $ AWCh1: num 0.16
#> $ AWCh2: num 0.122
#> $ AWCh3: num 0.0999
#> $ WWP : num 0.259
#> $ tetaS: num 0.511
#> - attr(*, "coef")=List of 4
#> ..$ lnAlfa: num -2.29 0 -3.53 0 2.44 ...
#> ..$ lnN : num 62.986 0 0 -0.833 -0.529 ...
#> ..$ tetaS : num 81.799 0 0 0.099 0 ...
#> ..$ tetaR : num 22.733 -0.164 0 0 0 ...
#> - attr(*, "PTF.names")=List of 1
#> ..$ variable: chr "ai1" "sand" "silt" "clay" ...
attr(x, "coef")
#> $lnAlfa
#> [1] -2.294 0.000 -3.526 0.000 2.440 0.000 -0.076 -11.331
#> [9] 0.019 0.000 0.000 0.000
#>
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#> $lnN
#> [1] 62.986 0.000 0.000 -0.833 -0.529 0.000 0.000 0.593 0.000 0.007
#> [11] -0.014 0.000
#>
#> $tetaS
#> [1] 81.7990 0.0000 0.0000 0.0990 0.0000 -31.4200 0.0180
#> [8] 0.4510 0.0000 0.0000 0.0000 -0.0005
#>
#> $tetaR
#> [1] 22.7330 -0.1640 0.0000 0.0000 0.0000 0.0000 0.2350 -0.8310
#> [9] 0.0000 0.0018 0.0000 0.0026

where SNDPPT, SLTPPT and CLYPPT are the measured sand, silt and clay content in percent, ORCDRC is the
soil organic carbon concentration in permille, BLD is the bulk density in kg/m3, CEC is the Cation
Exchange Capacity, and PHIHOX is the soil pH in water suspension. The output AWCh1, AWCh2, AWCh3
are the available soil water capacity (volumetric fraction) for pF 2.0, 2.3 and 2.5, WWP is the soil
water capacity (volumetric fraction) until wilting point, and tetaS is the saturated water content,
respectively.

3.5 Harmonization of soil data and pedo-transfer functions

3.5.1 Basic concepts of harmonization of soil property values

A well known issue with legacy soils data is the use of different methods for analyzing soils in
the laboratory or describing them in the field. These different methods yield different values that
are not exactly equivalent or comparable. This creates a need to assess the significance of the
differences in values arising from different methods or method-groups, and possibly the need to
harmonize values produced using different methods in order to make them roughly equivalent
and comparable. The process of conversion of values measured according to an original method
to values roughly equivalent to those measured according to an agreed-upon standard reference
method is referred to as data harmonization.
Note that differences in methods are not necessarily reflected in different values for a given at-
tribute. The value reported is fundamentally related to the particular method used for analysis,
which we correctly or incorrectly label as similar regardless of the analytical method used.
When using legacy soils data for global soil mapping and analysis projects, it is important to first
decide whether it is necessary and important to convert measurements made using various differ-
ent laboratory methods into equivalent values in the specified standard reference method. This
assessment can be made for each soil property individually. Decisions as to whether harmonization
is necessary may be influenced by the resolution of the mapping and the desired precision and
accuracy of the output predictions.
The process of conversion of values measured by an original method to values roughly equivalent to
those measured by an agreed-upon standard reference method is referred to as data harmonization.
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Table 3.4 Simple conversion of the USDA texture-by-hand classes to texture fractions (sd indicates estimated
standard deviation).

Number Texture.class Sand Silt Clay Sand_sd Silt_sd Clay_sd
1 clay (C) 22 22 56 11.8 9.8 11.1
2 clay loam (CL) 32 34 33 7.0 7.7 3.5
3 loam (L) 41 39 20 6.8 6.0 5.1
4 loamy sand (LS) 83 11 7 3.8 5.8 3.2
5 sand (S) 92 4 3 3.0 3.0 2.2
6 sandy clay (SC) 51 9 40 4.3 4.4 3.9
7 sandy clay loam (SCL) 60 14 26 7.9 7.3 4.2
8 silt (Si) 7 85 9 3.9 3.2 3.1
9 silty clay (SiC) 7 47 46 4.5 4.7 4.4

10 silty clay loam (SiCL) 9 58 33 5.7 6.8 3.5
11 silty loam (SiL) 18 64 18 10.9 8.8 6.5
12 sandy loam (SL) 67 22 12 8.5 10.2 4.7

Examples of harmonization would be converting values assessed by e.g. pH in 1:2 water to values
as if assessed by pH in 1:5 water, or organic carbon by Walkley-Black into organic carbon by dry
combustion.

3.5.2 Example of harmonization using texture-by-hand classes

Harmonization of values reported for sand, silt and clay computed using methods of textural
analysis that use definitions for particle size fractions different from the reference method will
also have to be converted to the standard particle size definitions adopted for some international
specifications. For example, classes in the texture triangle represent fractions for sand, silt and
clay which can be assessed using the gravity point for the class (Tbl. 3.4; see also further Fig.
3.21).
Neither the GlobalSoilMap project nor GSIF has yet identified and selected specific functions to
use to harmonize data produced using different analytical methods for any of the soil properties
that are to be predicted and mapped. It is possible that a single globally-applicable default har-
monization function could potentially be identified for each of the methods of analysis for each of
the soil properties selected for global analysis. However, this would require the current multitude
of method definitions to be unambiguously defined and uniquely identified (IDx), and possibly
grouped into aggregate classes, for subsequent conversion from IDx to IDy.

Soil observations, such as observation of texture-by-hand class, are often inexpensive, but rely on
good expert knowledge skills. Statistical frameworks are needed that can use both highly precise
and quick-and-inaccurate observations to generate better soil maps.

We have previously noted that locally-specific harmonization functions have consistently proven
to be more effective than global ones and there is widespread agreement that there is generally
no universal equation for converting from one method to another in all instances (Konen et al,
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2002; Meersmans et al, 2009; Jankauskas et al, 2006; Jolivet et al, 1998; De Vos et al, 2007).
Consequently, there will likely be a need to develop locally relevant harmonization functions at
the continental or regional level that apply to restricted soil-landscape domains.

McBratney et al (2002) proposed the concept of a soil inference system (SINFERS) that incorpo-
rated both expert soil knowledge and statistical prediction equations. The proposed system was
intended to implement two major functions, namely:

1. Predict all soil properties using all possible (known) combinations of inputs and harmonization
functions.

2. Select the combination that leads to a prediction with the minimum variance.

3.6 Soil class data

3.6.1 Soil types

Soil types or soil classes are categories of soil bodies with similar soil properties and/or genesis
and functions. There are three main approaches to soil classification (Eswaran et al, 2010; Buol
et al, 2011):

1. Classification of soils for the purpose of engineering — Here the focus is put on predicting soil
engineering properties and behaviors i.e. on physical and hydrological soil properties.

2. Descriptive classification of soil for the purpose of explaining the soil genesis — Here the focus
is put on soil morphology and pedogenesis i.e. functioning of the soil as part of an ecosystem.
The representative soil types derived through morphological classification are often visualized
as soil profiles or by using soil-depth functions.

3. Numerical or statistical classification of soils — This is purely data-driven soil classification
which can result in significant groupings of soil properties, but that then do not have any
cognitive name and are difficult to memorize.

Soil classification or soil taxonomy supports the transfer of soil information from one place, or
individual, to another. Classifying soils can also often be very cost effective — if we identify the soil
class correctly, it is highly likely that we will be able to predict multiple additional soil properties
that co-vary by soil type, and that would otherwise require significant resources to measure in the
lab.

There are two major international soil taxonomic systems of primary interest for global soil map-
ping: The USDA’s Soil Taxonomy (U.S. Department of Agriculture, 2014), and the FAO’s World
Reference Base (IUSS Working Group WRB, 2006). Both KST and WRB are hierarchial, key-
based morphological classification systems, but with increasingly more analytical data required
to reach a specific, more refined, class (Krasilnikov et al, 2009). Mapping soil types, using WRB
or KST or both, has been of interest for global soil mapping projects since the first development
of the global classification systems. As a matter of interest, the term “World soil map” has been
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used exclusively for cartographic presentation of the global distribution of KST soil orders (12)
and/or FAO WRB soil groups (32).

USDA’s Soil Taxonomy is probably the most developed soil classification system in the world.
Its use is highly recommended also because all documents, databases and guidelines are publicly
available without restrictions.

 

 

Fig. 3.18 The USDA-NRCS map of the Keys to Soil Taxonomy soil suborders of the world at 20 km. The
map shows the distribution of 12 soil orders. The original map also contains assumed distributions for suborders
e.g. Histels, Udolls, Calcids, and similar. Projected in the Robinson projection commonly used to display world
maps.
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Fig. 3.19 Distribution of the USDA suborders shown in Fig. 3.18.

Soil types can be mapped from field observations using statistically robust methods such as multi-
nomial logistic regression as implemented in the nnet package for R (Venables and Ripley, 2002).
Theoretically, given a sufficient number and an adequate spatial distribution of field observed
classes, multinomial logistic regression could even be used to map soil taxa at lower taxonomic
levels with hundreds of unique taxonomic entities.
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Fig. 3.20 USDA classification system and approximate minimum number of observations required to fit a global
multinomial regression model.

The map in Fig. 3.18 shows the global distribution of Soil Taxonomy soil suborders according
to USDA-NRCS World Soil Index2. Assuming a rule of thumb that we need at least 5 and, if
possible, 10 observations of a specific soil taxonomic entity per unique combination of predictor
variables and observations (Harrell, 2001), it is possible to estimate that the optimum number of
field observations required to e.g. predict the global distribution of USDA soil series would be in
the order of few millions of classified soil profiles (Fig. 3.20).

3.6.2 Other factor-type variables

Pedometric / geostatistical methods can be used not only to predict the spatial distribution of
soil types but also of any other categorical soil variables. There are many soil categorical variables
for which maps would be extremely useful for soil management and modelling. We list here some
of the most well known / most widely used soil categorical variables:

• Diagnostic soil horizons — Diagnostic soil horizons (e.g. Mollic or Gypsic horizon in the WRB
system) are soil layers with specific soil properties commonly developed as a result of soil
formation processes. They are much easier to detect in the field than soil types but are rarely
mapped over entire areas. Diagnostic soil horizons can theoretically be mapped as 3D soil
polygons or probabilities (rasters) attached to specific depths.

• Soil material classes — Soil horizons or whole profiles can be dominated by minerals or their
combinations e.g. organic material in the soil, calcaric material, tephric material etc.

2 https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/worldsoils/?cid=nrcs142p2_054010

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/worldsoils/?cid=nrcs142p2_054010
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• Munsell colour classes — Soil in dry and/or wet condition can be described using some 1–2
thousand Munsell colour classes. Each Munsell colour class carries a lot of information about
the soil (Fernandez et al, 1988), so that a map of Munsell soil colour classes could be very useful
for soil management.

• Soil management zones —Each unique combination of soil properties or types and management
zones can be further expanded into a mixed classification system.

• Land degradation classes — Land degradation classes contain information about soil, but also
about land cover and land use.

As with any map, categorical, factor-type soil variables can be mapped globally (together with the
uncertainty) as long as there is sufficient training field data to properly support application of the
prediction algorithm. The other technical problem is the amount of storage required to save and
share all the produced predictions. Each category of a soil categorical variable must be mapped
separately, which can lead to hundreds of grids. The global land cover map for example contains
only some 35 categories, so that it is relatively easy to distribute and use it inside a GIS.

3.7 Importing and formatting soil data in R

3.7.1 Converting texture-by-hand classes to fractions

In the following example we look at how to convert texture-by-hand estimated classes to texture
fractions i.e. sand, silt and clay content in %. We focus on the USDA texture-by-hand classes,
which are embedded in the soiltexture package3, kindly contributed by Julien Moeys. The USDA
texture triangle can be accessed by:

library(soiltexture)
#> Warning: no DISPLAY variable so Tk is not available
TT.plot(class.sys = "USDA.TT")

3 http://cran.r-project.org/web/packages/soiltexture/

http://cran.r-project.org/web/packages/soiltexture/
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Fig. 3.21 Soil texture triangle based on the USDA system. Generated using the soiltexture package
(http://cran.r-project.org/web/packages/soiltexture/).

We can also print out a table with all class names and vertices numbers that defines each class:

TT.classes.tbl(class.sys="USDA.TT", collapse=", ")
#> abbr name points
#> [1,] "Cl" "clay" "24, 1, 5, 6, 2"
#> [2,] "SiCl" "silty clay" "2, 6, 7"
#> [3,] "SaCl" "sandy clay" "1, 3, 4, 5"
#> [4,] "ClLo" "clay loam" "5, 4, 10, 11, 12, 6"
#> [5,] "SiClLo" "silty clay loam" "6, 12, 13, 7"
#> [6,] "SaClLo" "sandy clay loam" "3, 8, 9, 10, 4"
#> [7,] "Lo" "loam" "10, 9, 16, 17, 11"
#> [8,] "SiLo" "silty loam" "11, 17, 22, 23, 18, 19, 13, 12"
#> [9,] "SaLo" "sandy loam" "8, 14, 21, 22, 17, 16, 9"
#> [10,] "Si" "silt" "18, 23, 26, 19"
#> [11,] "LoSa" "loamy sand" "14, 15, 20, 21"
#> [12,] "Sa" "sand" "15, 25, 20"
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So knowing that the soil texture classes are defined geometrically, a logical estimate of the texture
fractions from a class is to take the geometric centre of each polygon in the texture triangle. To
estimate where the geometric centre is, we can for example use the functionality in the sp package.
We start by creating a SpatialPolygons object, for which we have to calculate coordinates in the xy
space and bind polygons one by one:

vert <- TT.vertices.tbl(class.sys = "USDA.TT")
vert$x <- 1-vert$SAND+(vert$SAND-(1-vert$SILT))*0.5
vert$y <- vert$CLAY*sin(pi/3)
USDA.TT <- data.frame(TT.classes.tbl(class.sys = "USDA.TT", collapse = ", "))
TT.pnt <- as.list(rep(NA, length(USDA.TT$name)))
poly.lst <- as.list(rep(NA, length(USDA.TT$name)))

next we strip the vertices and create a list of polygons:

library(sp)
for(i in 1:length(USDA.TT$name)){
TT.pnt[[i]] <- as.integer(strsplit(unclass(paste(USDA.TT[i, "points"])), ", ")[[1]])
poly.lst[[i]] <- vert[TT.pnt[[i]],c("x","y")]
## add extra point:
pp <- Polygon(rbind(poly.lst[[i]], poly.lst[[i]][1,]))
poly.lst[[i]] <- sp::Polygons(list(pp), ID=i)

}

and convert texture triangle to a spatial object:

poly.sp <- SpatialPolygons(poly.lst, proj4string=CRS(as.character(NA)))
poly.USDA.TT <- SpatialPolygonsDataFrame(poly.sp,

data.frame(ID=USDA.TT$name), match.ID=FALSE)

The resulting object now also contains slots of type labpt which is exactly the geometric gravity
point of the first polygon automatically derived by the SpatialPolygons function.

slot(slot(poly.USDA.TT, "polygons")[[1]], "labpt")
#> [1] 0.490 0.545

Next we need to create a function that converts the xy coordinates (columns) in a texture triangle
to texture fraction values. Let’s call this function get.TF.from.XY:

get.TF.from.XY <- function(df, xcoord, ycoord) {
df$CLAY <- df[,ycoord]/sin(pi/3)
df$SAND <- (2 - df$CLAY - 2 * df[,xcoord]) * 0.5
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df$SILT <- 1 - (df$SAND + df$CLAY)
return(df)

}

Now everything is ready to estimate the soil fractions based on a system of classes. For the case
of the USDA classifications system we get:

USDA.TT.cnt <- data.frame(t(sapply(slot(poly.USDA.TT, "polygons"), slot, "labpt")))
USDA.TT.cnt$name <- poly.USDA.TT$ID
USDA.TT.cnt <- get.TF.from.XY(USDA.TT.cnt, "X1", "X2")
USDA.TT.cnt[,c("SAND","SILT","CLAY")] <- signif(USDA.TT.cnt[,c("SAND","SILT","CLAY")], 2)
USDA.TT.cnt[,c("name","SAND","SILT","CLAY")]
#> name SAND SILT CLAY
#> 1 clay 0.200 0.180 0.630
#> 2 silty clay 0.067 0.470 0.470
#> 3 sandy clay 0.520 0.067 0.420
#> 4 clay loam 0.320 0.340 0.340
#> 5 silty clay loam 0.100 0.560 0.340
#> 6 sandy clay loam 0.600 0.130 0.270
#> 7 loam 0.410 0.400 0.190
#> 8 silty loam 0.210 0.650 0.130
#> 9 sandy loam 0.650 0.250 0.100
#> 10 silt 0.073 0.870 0.053
#> 11 loamy sand 0.820 0.120 0.058
#> 12 sand 0.920 0.050 0.033

Now that we have created a function that converts values in the texture triangle to texture
fractions, we can go further and even estimate the uncertainty of estimating each texture fraction
based on the class. For this we can use simulations i.e. randomly sample 100 points within some
texture class and then derive standard deviations for each texture fraction. Note that, although
this sounds like a complicated operation, we can run this in two lines of code. For example to
estimate uncertainty of converting the class Cl (clay) to texture fractions we can simulate 100
random points the class polygon using the spsample function from the sp package (Bivand et al,
2013):

sim.Cl <- data.frame(spsample(poly.USDA.TT[poly.USDA.TT$ID=="clay",],
type="random", n=100))

sim.Cl <- get.TF.from.XY(sim.Cl, "x", "y")
sd(sim.Cl$SAND); sd(sim.Cl$SILT); sd(sim.Cl$CLAY)
#> [1] 0.123
#> [1] 0.113
#> [1] 0.142

which means that we should not expect better precision of estimating the clay content based on
class Cl than ±15%.
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For some real soil profile data set we could also plot all texture fractions in the texture triangle
to see how frequently one should expect some soil classes to appear:

require(GSIF)
data(afsp)
tdf <- afsp$horizons[,c("CLYPPT", "SLTPPT", "SNDPPT")]
tdf <- tdf[!is.na(tdf$SNDPPT)&!is.na(tdf$SLTPPT)&!is.na(tdf$CLYPPT),]
tdf <- tdf[runif(nrow(tdf))<.15,]
tdf$Sum <- rowSums(tdf)
for(i in c("CLYPPT", "SLTPPT", "SNDPPT")) { tdf[,i] <- tdf[,i]/tdf$Sum * 100 }
names(tdf)[1:3] <- c("CLAY", "SILT", "SAND")

TT.plot(class.sys = "USDA.TT", tri.data = tdf,
grid.show = FALSE, pch="+", cex=.4, col="red")
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Fig. 3.22 Distribution of observed soil textures for the Africa Soil Profiles.

This shows that not all positions in the triangle have the same prior probability. So probably a
more sensitive way to estimate uncertainty of converting soil texture classes to fractions would
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be to run simulations using a density image showing the actual distribution of classes and then,
by using the rpoint function in the spatstat package4, we could also derive even more realistic
conversions from texture-by-hand classes to texture fractions.

3.7.2 Converting Munsell color codes to other color systems

In the next example we look at the Munsell color codes and conversion algorithms from a code to
RGB and other color spaces. Munsell color codes can be matched with RGB values via the Munsell
color codes conversion table5. You can load a table with 2350 entries from the book repository:

load("extdata/munsell_rgb.rdata")
library(colorspace)
munsell.rgb[round(runif(1)*2350, 0),]
#> Munsell R G B
#> 2254 7.5Y_1_2 37 34 17

as(colorspace::RGB(R=munsell.rgb[1007,"R"]/255,
G=munsell.rgb[1007,"G"]/255,
B=munsell.rgb[1007,"B"]/255), "HSV")

#> H S V
#> [1,] 3.53 0.0798 0.835

This shows that, for any given Munsell color code, it is relatively easy to convert it to any other
color system available in R.

Within the R package aqp6 one can directly transform Munsell color codes to standard color
classes in R (Beaudette et al, 2013). For example, to convert the Munsell color code to RGB
values from the example above we would run:

aqp::munsell2rgb(the_hue = "10B", the_value = 2, the_chroma = 12)
#> [1] "#003A7CFF"

Now the colors are coded in the hexadecimal format7, which is quite abstract but can be easily
browsed via some web color table. To get the actual RGB values we would run:

4 http://spatstat.org
5 http://www.cis.rit.edu/mcsl/online/munsell.php
6 http://casoilresource.lawr.ucdavis.edu/drupal/node/201
7 http://en.wikipedia.org/wiki/Web_colors#Hex_triplet

http://spatstat.org
http://www.cis.rit.edu/mcsl/online/munsell.php
http://casoilresource.lawr.ucdavis.edu/drupal/node/201
http://en.wikipedia.org/wiki/Web_colors#Hex_triplet


3.7 Importing and formatting soil data in R 123

grDevices::col2rgb("#003A7CFF")
#> [,1]
#> red 0
#> green 58
#> blue 124

The hex triplet format is also very similar to the color format used in the KML reference8:

plotKML::col2kml("#003A7CFF")
#> [1] "#ff7c3a00"

To plot the actual colors based on an actual soil profile database we often need to prepare the
color codes before we can run the conversion (Rossel et al, 2006). In the case of the Africa Soil
Profile Database9:

data(afsp)
head(afsp$horizons[!is.na(afsp$horizons$MCOMNS),"MCOMNS"])
#> [1] 10YR3/3 10YR3/3 10YR3/3 10YR3/3 10YR3/3 10YR3/3
#> 289 Levels: 10BG4/1 10R2.5/1 10R2/1 10R2/2 10R3/2 10R3/3 10R3/4 ... N7/0

Note that the Munsell color codes have been prepared as text. Hence we need to spend some effort
to separate hue from saturation and intensity before we can derive and plot actual colors. We start
by merging the tables of interest so both coordinates and Munsell color codes are available in the
same table:

mcol <- plyr::join(afsp$horizons[,c("SOURCEID","MCOMNS","UHDICM","LHDICM")],
afsp$sites[,c("SOURCEID","LONWGS84","LATWGS84")])

#> Joining by: SOURCEID
mcol <- mcol[!is.na(mcol$MCOMNS),]
str(mcol)
#> 'data.frame': 31502 obs. of 6 variables:
#> $ SOURCEID: Factor w/ 26270 levels "100902","100903",..: 974 974 974 974 974 974 975 975 975 975 ...
#> $ MCOMNS : Factor w/ 289 levels "10BG4/1","10R2.5/1",..: 40 40 40 40 40 40 23 23 23 23 ...
#> $ UHDICM : num 0 8 25 50 81 133 0 8 19 30 ...
#> $ LHDICM : num 8 25 50 81 133 160 8 19 30 50 ...
#> $ LONWGS84: num 17.6 17.6 17.6 17.6 17.6 ...
#> $ LATWGS84: num -11 -11 -11 -11 -11 ...

Next we need to format all Munsell color codes to Hue_Saturation_Intensity format. We can incre-
mentally replace the existing codes until all codes can be matched with the RGB table:

8 https://developers.google.com/kml/documentation/kmlreference
9 http://gsif.r-forge.r-project.org/afsp.html

https://developers.google.com/kml/documentation/kmlreference
http://gsif.r-forge.r-project.org/afsp.html
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mcol$Munsell <- sub(" ", "", sub("/", "_", mcol$MCOMNS))
hue.lst <- expand.grid(c("2.5", "5", "7.5", "10"),

c("YR","GY","BG","YE","YN","YY","R","Y","B","G"))
hue.lst$mhue <- paste(hue.lst$Var1, hue.lst$Var2, sep="")
for(j in hue.lst$mhue[1:28]){
mcol$Munsell <- sub(j, paste(j, "_", sep=""), mcol$Munsell, fixed=TRUE)

}
mcol$depth <- mcol$UHDICM + (mcol$LHDICM-mcol$UHDICM)/2
mcol.RGB <- merge(mcol, munsell.rgb, by="Munsell")
str(mcol.RGB)
#> 'data.frame': 11806 obs. of 11 variables:
#> $ Munsell : chr "10R_2_2" "10R_2_2" "10R_2_2" "10R_2_2" ...
#> $ SOURCEID: Factor w/ 26270 levels "100902","100903",..: 18724 18724 20331 18724 20331 20331 18724 9089 4859 23688 ...
#> $ MCOMNS : Factor w/ 289 levels "10BG4/1","10R2.5/1",..: 4 4 4 4 4 4 4 5 5 5 ...
#> $ UHDICM : num 90 35 30 10 53 0 0 18 0 0 ...
#> $ LHDICM : num 135 90 53 35 98 30 10 24 15 5 ...
#> $ LONWGS84: num 32.23 32.23 4.76 32.23 4.76 ...
#> $ LATWGS84: num -26.15 -26.15 8.79 -26.15 8.79 ...
#> $ depth : num 112.5 62.5 41.5 22.5 75.5 ...
#> $ R : int 67 67 67 67 67 67 67 91 91 91 ...
#> $ G : int 48 48 48 48 48 48 48 68 68 68 ...
#> $ B : int 45 45 45 45 45 45 45 63 63 63 ...

Which allows us to plot the actual observed colors of the top soil (0–30 cm) for the whole of Africa:

mcol.RGB <- mcol.RGB[!is.na(mcol.RGB$R),]
mcol.RGB$Rc <- round(mcol.RGB$R/255, 3)
mcol.RGB$Gc <- round(mcol.RGB$G/255, 3)
mcol.RGB$Bc <- round(mcol.RGB$B/255, 3)
mcol.RGB$col <- rgb(mcol.RGB$Rc, mcol.RGB$Gc, mcol.RGB$Bc)
mcol.RGB <- mcol.RGB[mcol.RGB$depth>0 & mcol.RGB$depth<30 & !is.na(mcol.RGB$col),]
coordinates(mcol.RGB) <- ~ LONWGS84+LATWGS84

load("extdata/admin.af.rda")
proj4string(admin.af) <- "+proj=longlat +datum=WGS84"
#> Warning in ReplProj4string(obj, CRS(value)): A new CRS was assigned to an object with an existing CRS:
#> +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0
#> without reprojecting.
#> For reprojection, use function spTransform
country <- as(admin.af, "SpatialLines")
par(mar=c(.0,.0,.0,.0), mai=c(.0,.0,.0,.0))
plot(country, col="darkgrey", asp=1)
points(mcol.RGB, pch=21, bg=mcol.RGB$col, col="black")
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Fig. 3.23 Actual observed soil colors (moist) for the top soil based on the Africa Soil Profiles Database.

Finally, via the plotKML package you can also plot the actual colors of horizons by converting
tables to SoilProfileCollection class in the aqp package10. Consider this soil profile from Nigeria:

library(plyr)
library(aqp)
#> This is aqp 1.17
#>
#> Attaching package: 'aqp'
#> The following object is masked from 'package:base':
#>
#> union
lon = 3.90; lat = 7.50; id = "ISRIC:NG0017"; FAO1988 = "LXp"
top = c(0, 18, 36, 65, 87, 127)
bottom = c(18, 36, 65, 87, 127, 181)

10 http://cran.r-project.org/web/packages/aqp/

http://cran.r-project.org/web/packages/aqp/
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ORCDRC = c(18.4, 4.4, 3.6, 3.6, 3.2, 1.2)
hue = c("7.5YR", "7.5YR", "2.5YR", "5YR", "5YR", "10YR")
value = c(3, 4, 5, 5, 5, 7); chroma = c(2, 4, 6, 8, 4, 3)
## prepare a SoilProfileCollection:
prof1 <- plyr::join(data.frame(id, top, bottom, ORCDRC, hue, value, chroma),

data.frame(id, lon, lat, FAO1988), type='inner')
#> Joining by: id
prof1$soil_color <- with(prof1, aqp::munsell2rgb(hue, value, chroma))
#> Notice: converting hue to character
depths(prof1) <- id ~ top + bottom
#> Warning: converting IDs from factor to character
site(prof1) <- ~ lon + lat + FAO1988
coordinates(prof1) <- ~ lon + lat
proj4string(prof1) <- CRS("+proj=longlat +datum=WGS84")
prof1
#> Object of class SoilProfileCollection
#> Number of profiles: 1
#>
#> Horizon attributes:
#> id top bottom ORCDRC hue value chroma soil_color hzID
#> 1 ISRIC:NG0017 0 18 18.4 7.5YR 3 2 #584537FF 1
#> 2 ISRIC:NG0017 18 36 4.4 7.5YR 4 4 #7E5A3BFF 2
#> 3 ISRIC:NG0017 36 65 3.6 2.5YR 5 6 #A96C4FFF 3
#> 4 ISRIC:NG0017 65 87 3.6 5YR 5 8 #B06A32FF 4
#> 5 ISRIC:NG0017 87 127 3.2 5YR 5 4 #9A7359FF 5
#> 6 ISRIC:NG0017 127 181 1.2 10YR 7 3 #C4AC8CFF 6
#>
#> Sampling site attributes:
#> id FAO1988
#> 1 ISRIC:NG0017 LXp
#>
#> Spatial Data:
#> min max
#> lon 3.9 3.9
#> lat 7.5 7.5
#> [1] "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"

Once an object is in the format of SoilProfileCollection it can be directly plotted in Google Earth
via the generic plotKML command:

plotKML(prof1, var.name="ORCDRC", color.name="soil_color")
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Fig. 3.24 Soil profile from Nigeria plotted in Google Earth with actual observed colors.

3.8 Using Machine Learning to build Pedo-Transfer-Functions

3.8.1 PTF for Bulk Density

In the following examples we look at possibilities of using Machine Learning11 to predict soil
properties and classes from other soil properties and classes. In the first example, we try to build a
Pedo-Transfer-Function (PTF) to predict bulk density using soil properties such as organic carbon
content, soil texture and coarse fragments. Bulk density is often only available for a part of soil
profiles, so if we could use a PTF to fill in all gaps in bulk density, then most likely we would not
need to omit BD from further analysis. For testing PTFs to predict bulk density from other soil
properties we will use a subset of the ISRIC WISE soil profile data set (Batjes, 2009), which can
be loaded from:

library(randomForestSRC)
#>

11 wiki/soilmapping_using_mla

wiki/soilmapping_using_mla
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#> randomForestSRC 2.8.0
#>
#> Type rfsrc.news() to see new features, changes, and bug fixes.
#>
library(ggRandomForests)
#>
#> Attaching package: 'ggRandomForests'
#> The following object is masked from 'package:randomForestSRC':
#>
#> partial.rfsrc
library(ggplot2)
library(scales)
load("extdata/sprops.wise.rda")
str(SPROPS.WISE)
#> 'data.frame': 47833 obs. of 17 variables:
#> $ SOURCEID: Factor w/ 10253 levels "AF0001","AF0002",..: 1 1 1 2 2 2 2 3 3 3 ...
#> $ SAMPLEID: chr "AF0001_1" "AF0001_2" "AF0001_3" "AF0002_1" ...
#> $ UHDICM : int 0 15 60 0 20 60 110 0 20 50 ...
#> $ LHDICM : int 15 60 150 20 60 110 170 20 50 110 ...
#> $ DEPTH : num 7.5 37.5 105 10 40 85 140 10 35 80 ...
#> $ CRFVOL : int 20 NA NA NA NA NA NA NA NA NA ...
#> $ CECSUM : num NA NA NA NA NA NA NA NA NA NA ...
#> $ SNDPPT : int 40 10 10 40 15 10 40 40 65 60 ...
#> $ CLYPPT : int 20 35 35 20 20 35 20 20 10 25 ...
#> $ BLD : num NA NA NA NA NA NA NA NA NA NA ...
#> $ SLTPPT : int 40 55 55 40 65 55 40 40 25 15 ...
#> $ PHIHOX : num 7.9 7.9 7.9 8.5 8.6 8.5 8.8 8.8 9.2 8.9 ...
#> $ PHIKCL : num NA NA NA NA NA NA NA NA NA NA ...
#> $ ORCDRC : num 7.6 2.3 0.9 12.8 6 3.9 2.7 5.9 2.4 NA ...
#> $ LONWGS84: num 69.2 69.2 69.2 69.2 69.2 ...
#> $ LATWGS84: num 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 ...
#> $ SOURCEDB: chr "WISE" "WISE" "WISE" "WISE" ...

For model fitting we will use the randomForestSRC12 package, which is a robust implementation
of the random forest algorithm with options for parallelization and visualization of model outputs:

bd.fm = as.formula("BLD ~ ORCDRC + PHIHOX + SNDPPT + CLYPPT + CRFVOL + DEPTH")
rfsrc_BD <- rfsrc(bd.fm, data=SPROPS.WISE)
rfsrc_BD
#> Sample size: 3330
#> Number of trees: 1000
#> Forest terminal node size: 5
#> Average no. of terminal nodes: 685
#> No. of variables tried at each split: 2

12 https://cran.r-project.org/package=randomForestSRC

https://cran.r-project.org/package=randomForestSRC


3.8 Using Machine Learning to build Pedo-Transfer-Functions 129

#> Total no. of variables: 6
#> Resampling used to grow trees: swr
#> Resample size used to grow trees: 3330
#> Analysis: RF-R
#> Family: regr
#> Splitting rule: mse *random*
#> Number of random split points: 10
#> % variance explained: 39.6
#> Error rate: 46370

which shows that the model explains about 40% with an RMSE of ±200 kg/m3. Although the
MSE is relatively high, the model can at least be used to fill-in the missing values for BD. We can
plot the partial plots between the target variable and all covariates by using:

 

 

Fig. 3.25 Bulk density as a function of organic carbon, pH, sand and clay content, coarse fragments and depth.

Obviously, the key to explaining bulk density is soil organic carbon, while depth and pH are the
2nd and 3rd most important covariates. Using this MLA-based model we can predict bulk density
for various combinations of soil properties:
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predict(rfsrc_BD, data.frame(ORCDRC=1.2, PHIHOX=7.6,
SNDPPT=45, CLYPPT=12, CRFVOL=0, DEPTH=20))$predicted

#> [1] 1548

and for a soil with higher organic carbon content:

predict(rfsrc_BD, data.frame(ORCDRC=150, PHIHOX=4.6,
SNDPPT=25, CLYPPT=35, CRFVOL=0, DEPTH=20))$predicted

#> [1] 906

3.8.2 PTF for correlating classification systems

In the second example we use ISRIC WISE data set to build a correlation function to translate
soil classes from one classification system to the other. The training data can be loaded from:

load("extdata/wise_tax.rda")
str(WISE_tax)
#> 'data.frame': 8189 obs. of 7 variables:
#> $ SOURCEID: Factor w/ 8189 levels "AF0001","AF0002",..: 1 2 3 4 5 6 7 8 9 10 ...
#> $ LATWGS84: num 34.5 34.5 34.5 34.3 32.4 ...
#> $ LONWGS84: num 69.2 69.2 69.2 61.4 62.1 ...
#> $ TAXNWRB : Factor w/ 146 levels "#N/A","Albic Arenosol",..: 104 9 9 72 17 16 122 49 8 9 ...
#> $ TAXOUSDA: Factor w/ 1728 levels ""," Calciorthid",..: 1 1 1 1 1 1 1 1 1 1 ...
#> $ LFORM : chr "LV" "LV" "LV" "LV" ...
#> $ LANDUS : chr "AA4" "AA6" "AA6" "AA4" ...

For this purpose we also need to import the cleaned legend for USDA classification:

leg <- read.csv("extdata/taxousda_greatgroups.csv")
str(leg)
#> 'data.frame': 434 obs. of 4 variables:
#> $ Great_Group: Factor w/ 434 levels "Acraquox","Acrohumox",..: 9 57 77 112 121 145 170 259 286 301 ...
#> $ Suborder : Factor w/ 79 levels "Albolls","Andepts",..: 4 4 4 4 4 4 4 4 4 4 ...
#> $ Order : Factor w/ 12 levels "Alfisols","Andisols",..: 1 1 1 1 1 1 1 1 1 1 ...
#> $ TAX : Factor w/ 434 levels "Alfisols_Aqualfs_Albaqualfs",..: 1 2 3 4 5 6 7 8 9 10 ...

Our objective is to develop a function to translate WRB classes into USDA classes with help of
some soil properties. We can try to add soil pH and clay content to increase the accuracy of the
model:
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x.PHIHOX <- aggregate(SPROPS.WISE$PHIHOX,
by=list(SPROPS.WISE$SOURCEID),
FUN=mean, na.rm=TRUE); names(x.PHIHOX)[1] = "SOURCEID"

x.CLYPPT <- aggregate(SPROPS.WISE$CLYPPT,
by=list(SPROPS.WISE$SOURCEID),
FUN=mean, na.rm=TRUE); names(x.CLYPPT)[1] = "SOURCEID"

WISE_tax$PHIHOX <- plyr::join(WISE_tax, x.PHIHOX, type="left")$x
#> Joining by: SOURCEID
WISE_tax$CLYPPT <- plyr::join(WISE_tax, x.CLYPPT, type="left")$x
#> Joining by: SOURCEID

After that we need to clean-up the classes so that we can focus on USDA suborders only:

sel.tax = complete.cases(WISE_tax[,c("TAXNWRB","PHIHOX","CLYPPT","TAXOUSDA")])
WISE_tax.sites <- WISE_tax[sel.tax,]
WISE_tax.sites$TAXOUSDA.f <- NA
for(j in leg$Suborder){
sel <- grep(j, WISE_tax.sites$TAXOUSDA, ignore.case=TRUE)
WISE_tax.sites$TAXOUSDA.f[sel] = j

}
WISE_tax.sites$TAXOUSDA.f <- as.factor(WISE_tax.sites$TAXOUSDA.f)
WISE_tax.sites$TAXNWRB <- as.factor(paste(WISE_tax.sites$TAXNWRB))

and finally we can fit a model to translate WRB profiles to USDA suborders:

TAXNUSDA.rf <- rfsrc(TAXOUSDA.f ~ TAXNWRB + PHIHOX + CLYPPT, data=WISE_tax.sites)
#TAXNUSDA.rf

This shows that the average accuracy is about 45%. We can test converting some classes with the
help of additional soil properties:

newdata = data.frame(TAXNWRB=factor("Calcaric Cambisol",
levels=levels(WISE_tax.sites$TAXNWRB)),
PHIHOX=7.8, CLYPPT=12)

x <- data.frame(predict(TAXNUSDA.rf, newdata, type="prob")$predicted)
x[,order(1/x)[1:2]]
#> Ochrepts Orthids
#> 1 0.288 0.154

So for example, the two most likely classes to equate to Calcaric Cambisols seem to be Ochrepts
and Orthids, which is not that much different from correlation classes reported in Krasilnikov et al
(2009).
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3.9 Summary points

In this chapter, we have endeavoured to provide precise and explicit descriptions of the soil prop-
erties and soil classes of greatest interest to current PSM activities. For each soil property (or
class) we have provided an explanation for why that property (or class) is of interest to users and
why it has been selected to be mapped globally, by us and by others. In many cases, the most
obvious reason is that the soil property is widely recorded and reported in legacy soil profile data
bases and is therefore available. But these soil properties are widely reported for good reasons,
mainly because they have been found to be important to consider when managing land or making
decisions about land capability or use. We have defined the spatial attributes of the soil properties
mapped at various scales, defined a standard reference (analysis) method for each soil property,
provided information on the units, precision and range of values used to describe each mapped
soil property and reviewed problems and opportunities related to harmonization of soil property
values contained in legacy soil profile databases that have been analysed using different methods
of analysis.

It should be noted that, in this chapter, we have emphasized the use of existing, or legacy, soil
profile data to provide the evidence used to construct predicton models for PSM. This emphasis
reflects the reality that, for most of the world, legacy soil profile data is all that we have to work
with, at the present time, and all that we can reasonably expect in the foreseeable future. Many
of the issues and challenges related to use and harmonization of legacy soil profile data discussed
in this chapter will hopefully be of less importance as newer, contemporary data are collected in
the field and analysed in the laboratory using more robust, statistically valid and reproduceable
methods (e.g. spectroscopy). In the meantime, standardization and harmonization of legacy soil
profile data will continue to present a challenge for global to regional PSM.

One attractive option for harmonizing soil analytical data following the SINFER concept would
be to create and maintain a Global Soil Reference Library (GSRL). This concept is further
discussed in the final chapter. Such a library would need to include data for a significant number
of soils from each continent or region. Each soil would be analysed for all properties of interest
using all commonly used methods of analysis. Values for a soil property for any soil analysed by
a given method could be converted into equivalent values in any other analytical method (as long
as data analysed by both methods were included in the GSRL) by developing pedo-transfer (or
conversion) functions using the fully analysed samples in the conversion library. In particular,
some variation of the similarity approach described by Jagtap et al (2004) for available water
capacity and Nemes et al (1999b) for harmonization of particle size data could be implemented to
harmonize all types of soil property values anywhere in the world. The value of the soil property in
the desired reference method could be estimated by finding the soil or soils in the reference library
that were most similar to the soil for which harmonization was required and then using the value
of the soil (or soils) in the desired reference method as the predicted harmonized value. If several
similar soils were identified, as is done by Nemes et al (1999b), then the predicted harmonized
value would be computed as a weighted mean, in the appropriate reference method, of all similar
soils; with weights selected according to the similarity of the soils in the conversion library to the
soil being harmonized.

What a GSRL would do, in effect, is to provide a single, centralized framework for harmonization
and conversion of soil property values. It would do this using a database of reference soils analysed
for all soil properties of interest by all major analytical methods. These fully analysed reference
soils would provide a framework for computing individualized, locally relevant conversion or pedo-
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transfer functions in a consistent and standardized manner. Consequently, global soil mapping
would benefit from having the best of both worlds, namely locally-specific harmonization functions
(which are known to be most effective), and also ones that were computed in a single standardized
manner using data in a single comprehensive reference database (which is desirable in terms of
simplifying harmonization and maintaining a record of how any value was harmonized).

Over time, we expect to see progress made in developing, applying and documenting harmonization
methods so that the values for any given soil property used to create predictive models for global
soil property mapping are fully harmonized and roughly equivalent for all input data sets. In
the shorter term, it is likely that the accuracy of global predictions will be reduced because of
weak, inconsistent or completely absent efforts to harmonize soil property values produced using
different analytical methods. In the longer term, we hope, and expect, that data collected in the
future, as we move forward, will benefit from adoption of methods of data collection and analysis
that are more systematic, more reproduceable, more accurate and more interchangeable. These
improvements should reduce the need for harmonization and standardization and should make
use of soil observation and measurement data easier and more consistent.





Chapter 4

Preparation of soil covariates for soil mapping

Edited by: T. Hengl and R. A. MacMillan

4.1 Soil covariate data sources

4.1.1 Types of soil covariates

Soils (and vegetation + ecosystems) form under complex interactions between climate, living
organism and anthropogenic influences, modified by relief and hydrological processes and operating
over long periods of time. This has been clearly identified first by Jenny (1994) with his CLORPT
factors of soil formation and subsequently extended by McBratney et al (2003) with the SCORPAN
formulation (see section 1.3.3).

The following groups of covariates are commonly considered for use in Predictive Soil Mapping:

1. Climate related covariates, which include:

• temperature maps,
• precipitation maps,
• snow cover maps,
• potential evapotranspiration,
• cloud fraction and other atmospheric images,

2. Vegetation and living organisms, which include:

• vegetation indices e.g. FAPAR (mean, median), NDVI, EVI,
• biomass, Leaf Area Index,
• land cover type maps,
• vegetation types and communities (if mapped at high accuracy),
• land cover,

135
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3. Relief and topography-related covariates, which include:

• standard window-based calculations e.g. slope, curvatures, standard deviation,
• standard flow model outputs,
• landform classes / landform class likelihoods,
• hydrological / soil accumulation and deposition indices — MRVBFI, Wetness index, height

above channel, height below ridge, horizontal distance to channel, horizontal distance to ridge,
• climatic and micro-climatic indices determined by relief e.g. incoming solar insolation and sim-

ilar,

4. Parent material / geologic material covariates, which include:

• bedrock type and age,
• bedrock mineralogy (acid, basic),
• surface material type, texture, age, mineralogy, thickness,
• volcanic activity, historic earthquake density,
• seismic activity level,
• gamma ray spectroscopy grids,
• gravity measurements,
• electrical conductivity/resistance,

5. Estimated geological age of surface, which include:

• bedrock age / surface material age,
• recent disturbance age,

6. Spatial position or spatial context, which include:

• latitude and longitude,
• distance to nearest large ocean
• Northing — distance to north pole,
• Southing — distance to south pole,
• Easting — distance to east,
• Westing — distance to west,
• shortest distance in any direction,
• distance to nearest high mountain,
• distance to nearest moderate hill,
• distance to nearest major river,

7. Human or Anthropogenic Influences, which include:

• land use / land management maps,
• probability / intensity of agricultural land use,
• probability / intensity of pasture or grazing use,
• probability / intensity of forest land management,
• probability / intensity of urbanization,
• soil dredging, surface sealing,
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• night time illumination (nightlights) images,
• probability of gullying or human-induced erosion,
• soil nutrient fertilization, liming and similar maps,

In the following sections we provide some practical advice (with links to the most important data
sources) on how to prepare soil covariates for use in PSM.

4.1.2 Soil covariate data sources (30–100 m resolution)

Adding relevant covariates that can help explain the distribution of soil properties increases the
accuracy of spatial predictions. Hence, prior to generating predictions of soil properties, it is a
good idea to invest in preparing a list of Remote Sensing (RS), geomorphological/lithologic and
DEM-based covariates that can potentially help explain the spatial distribution of soil properties
and classes. There are now many finer resolution (30–250 m) covariates with global coverage that
are publicly available without restrictions. The spatial detail, accessibility and accuracy of RS-
based products has been growing exponentially and there is no evidence that this trend is going
to slow down in the coming decades (Herold et al, 2016).
The most relevant (global) publicly available remote sensing-based covariates that can be down-
loaded and used to improve predictive soil mapping at high spatial resolutions are, for example:

• SRTM1 and/or ALOS W3D2 Digital Elevation Model (DEM) at 30 m and MERIT DEM3 at
100 m (these can be used to derive at least 8–12 DEM derivatives of which some generally prove
to be beneficial for mapping of soil chemical and hydrological properties);

• Landsat 7, 8 satellite images, either available from USGS’s GloVis4 / EarthExplorer5, or from
the GlobalForestChange project6 repository (Hansen et al, 2013);

• Landsat-based Global Surface Water (GSW) dynamics images7 at 30 m resolution for the period
1985–2016 (Pekel et al, 2016);

• Global Land Cover (GLC) maps based on the GLC30 project8 at 30 m resolution for 2000 and
2010 (Chen et al, 2015) and similar land cover projects (Herold et al, 2016);

• USGS’s global bare surface images9 at 30 m resolution;
• JAXA’s ALOS10 (PALSAR/PALSAR-2) radar images at 20 m resolution (Shimada et al, 2014);

radar images, bands HH: -27.7 (5.3) dB and HV: -35.8 (3.0) dB, from the JAXA’s ALOS project
1 https://lta.cr.usgs.gov/SRTM1Arc
2 http://www.eorc.jaxa.jp/ALOS/en/aw3d/index_e.htm
3 http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/
4 http://glovis.usgs.gov/
5 http://earthexplorer.usgs.gov/
6 https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.2.html
7 https://global-surface-water.appspot.com/download
8 http://www.globallandcover.com
9 https://landcover.usgs.gov/glc/
10 http://www.eorc.jaxa.jp/ALOS/en/dataset/dataset_index.htm

https://lta.cr.usgs.gov/SRTM1Arc
http://www.eorc.jaxa.jp/ALOS/en/aw3d/index_e.htm
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/
http://glovis.usgs.gov/
http://earthexplorer.usgs.gov/
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.2.html
https://global-surface-water.appspot.com/download
http://www.globallandcover.com
https://landcover.usgs.gov/glc/
http://www.eorc.jaxa.jp/ALOS/en/dataset/dataset_index.htm
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are especially interesting for mapping rock outcrops and exposed bedrock but are also used to
distinguish between bare soil and dense vegetation;

Note that the required download time for 30 m global RS data can be significant if the data
are needed for a larger area (hence you might consider using some RS data processing hub such
as Sentinel hub11, Google Earth Engine12 and/or Amazon Web Services13 instead of trying to
download large mosaics yourself).

Most recently soil mappers can also use more advanced (commercial) remote sensing products
often available at finer spatial resolution which include:

• WorldDEM (https://worlddem-database.terrasar.com) at 12 m resolution multiband elevation
products,

• German hyperspectral satellite mission EnMAP (http://www.enmap.org) products, which have
shown to be useful for mapping soil nutrients and minerals (Steinberg et al, 2016),

• Sentinel-1 soil moisture products, currently limited to 1 km to 500 m resolutions but available
at fast revisit times (Bauer-Marschallinger et al, 2019),

Hyperspectral imaging systems, similar to field-based soil spectroscopy, and the upcoming missions
such as SHALOM (Italy and Israel), HypXIM (France) and HypsIRI (USA) will most likely
revolutionaize use of remote sensing for soil mapping.

4.1.3 Soil covariate data sources (250 m resolution or coarser)

Hengl et al (2017a) used a large stack of slightly coarser resolution covariate layers for producing
SoilGrids250m predictions, most of which were based on remote sensing data:

• DEM-derived surfaces — slope, profile curvature, Multiresolution Index of Valley Bottom Flat-
ness (VBF), deviation from Mean Value, valley depth, negative and positive Topographic
Openness and SAGA Wetness Index — all based on a global merge of SRTMGL3 DEM and
GMTED2010 (Danielson et al, 2011). All DEM derivatives were computed using SAGA GIS
(Conrad et al, 2015),

• Long-term averaged monthly mean and standard deviation of the MODIS Enhanced Vegetation
Index (EVI). Derived using a stack of MOD13Q1 EVI images (Savtchenko et al, 2004),

• Long-term averaged mean monthly surface reflectances for MODIS bands 4 (NIR) and 7 (MIR).
Derived using a stack of MCD43A4 images (Mira et al, 2015),

• Long-term averaged monthly mean and standard deviation of the MODIS land surface temper-
ature (daytime and nighttime). Derived using a stack of MOD11A2 LST images (Wan, 2006),

11 http://www.sentinel-hub.com
12 https://earthengine.google.com
13 https://aws.amazon.com/public-datasets/

https://worlddem-database.terrasar.com
http://www.enmap.org
http://www.sentinel-hub.com
https://earthengine.google.com
https://aws.amazon.com/public-datasets/
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• Long-term averaged mean monthly hours under snow cover based on a stack of MOD10A2
8-day snow occurrence images (Hall and Riggs, 2007),

• Land cover classes (cultivated land, forests, grasslands, shrublands, wetlands, tundra, artificial
surfaces and bareland cover) for the year 2010 based on the GlobCover30 product by the
National Geomatics Center of China (Chen et al, 2015). Upscaled to 250 m resolution and
expressed as percent of pixel coverage,

• Monthly precipitation images derived as the weighted average between the WorldClim monthly
precipitation (Hijmans et al, 2005) and GPCP Version 2.2 (Huffman and Bolvin, 2009),

• Long-term averaged mean monthly hours under snow cover. Derived using a stack of MOD10A2
8-day snow occurrence images,

• Lithologic units (acid plutonics, acid volcanic, basic plutonics, basic volcanics, carbonate sedi-
mentary rocks, evaporite, ice and glaciers, intermediate plutonics, intermediate volcanics, meta-
morphics, mixed sedimentary rocks, pyroclastics, siliciclastic sedimentary rocks, unconsolidated
sediment) based on a Global Lithological Map GLiM (Hartmann and Moosdorf, 2012),

• Landform classes (breaks/foothills, flat plains, high mountains/deep canyons, hills, low hills,
low mountains, smooth plains) based on the USGS’s Map of Global Ecological Land Units
(Sayre et al, 2014).

• Global Water Table Depth in meters (Fan et al, 2013),

• Landsat-based estimated distribution of Mangroves (Giri et al, 2011),

• Average soil and sedimentary-deposit thickness in meters (Pelletier et al, 2016).

The covariates above were selected to represent factors of soil formation according to Jenny (1994):
climate, relief, living organisms, water dynamics and parent material. Of the five main factors,
water dynamics and living organisms (especially vegetation dynamics) are not trivial to represent,
as these operate over long periods of time and often exhibit chaotic behavior. Using reflectance
bands such as the mid-infrared MODIS bands from a single day, would be of little use for soil
mapping for areas with dynamic vegetation, i.e. with strong seasonal changes in vegetation cover.
To account for seasonal fluctuation and for inter-annual variations in surface reflectance, long-
term temporal signatures of the soil surface derived as monthly averages from long-term MODIS
imagery (15 years of data) can be more effective to use (Hengl et al, 2017a). Long-term average
seasonal signatures of surface reflectance or vegetation index provide a better indication of soil
characteristics than only a single snapshot of surface reflectance. Computing temporal signatures
of the land surface requires a considerable investment of time (comparable to the generation
of climatic images vs temporary weather maps), but it is probably the best way to effectively
represent the cumulative influence of living organisms on soil formation.

Behrens et al (2018a) recently reported that, for example, DEM derivatives derived at coarser
resolutions correlated better with some targeted soil properties than the same derivatives derived
at finer resolutions. In this case, resolution (or scale) was represented through various DEM aggre-
gation levels and filter sizes. Some physical and chemical processes of soil formation or vegetation
distribution might not be effective or obvious at finer aggregation levels, but these can become very
visible at coarser aggregation levels. In fact, it seems that spatial dependencies and interactions
of the covariates can often be explained better simply by aggregating DEM and its derivatives
(Behrens et al, 2018a).
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4.2 Preparing soil covariate layers

Before we are able to fit spatial prediction models and generate soil maps, a significant amount
of effort is first spent on preparing covariate “layers” that can be used as independent variables
(i.e. “predictor variables”) in the statistical modelling. Typical operations used to generate soil
covariate layers include:

• Converting polygon maps to rasters,

• Downscaling or upscaling (aggregating) rasters to match the target resolution (i.e. preparing a
stack),

• Filtering out missing pixels / reducing noise and multicolinearity (data overlap) problems,

• Overlaying and subsetting raster stacks and points,

The following examples should provide some ideas about how to program these steps using the
most concise possible syntax running the fastest and most robust algorithms. Raster data can
often be very large (e.g. millions of pixels) so processing large stacks of remote sensing scenes in
R needs to be planned carefully. The complete R tutorial can be downloaded from the github
repository14. Instructions on how to install and set-up all software used in this example can be
found in the software installation chapter 2.

4.2.1 Converting polygon maps to rasters

Before we can attach a polygon map to other stacks of covariates, it needs to be rasterized i.e. con-
verted to a raster layer defined with its bounding box (extent) and spatial resolution. Consider
for example the Ebergötzen data set15 polygon map from the plotKML package (Fig. 4.1):

library(rgdal)
#> Loading required package: sp
#> rgdal: version: 1.3-6, (SVN revision 773)
#> Geospatial Data Abstraction Library extensions to R successfully loaded
#> Loaded GDAL runtime: GDAL 2.2.2, released 2017/09/15
#> Path to GDAL shared files: /usr/share/gdal/2.2
#> GDAL binary built with GEOS: TRUE
#> Loaded PROJ.4 runtime: Rel. 4.8.0, 6 March 2012, [PJ_VERSION: 480]
#> Path to PROJ.4 shared files: (autodetected)
#> Linking to sp version: 1.3-1
library(raster)
library(plotKML)
#> plotKML version 0.5-9 (2019-01-04)

14 https://github.com/envirometrix/PredictiveSoilMapping
15 http://plotkml.r-forge.r-project.org/eberg.html

https://github.com/envirometrix/PredictiveSoilMapping
http://plotkml.r-forge.r-project.org/eberg.html
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#> URL: http://plotkml.r-forge.r-project.org/
library(viridis)
#> Loading required package: viridisLite
data(eberg_zones)
spplot(eberg_zones[1])

 

Clay_and_loess
Clayey_derivats
Sandy_material
Silt_and_sand

 

Fig. 4.1 Ebergotzen parent material polygon map with legend.

We can convert this object to a raster by using the raster package16. Note that before we can run
the operation, we need to know the target grid system i.e. the extent of the grid and its spatial
resolution. We can use this from an existing layer:

library(plotKML)
data("eberg_grid25")
gridded(eberg_grid25) <- ~x+y
proj4string(eberg_grid25) <- CRS("+init=epsg:31467")
r <- raster(eberg_grid25)
r
#> class : RasterLayer
#> dimensions : 400, 400, 160000 (nrow, ncol, ncell)
#> resolution : 25, 25 (x, y)
#> extent : 3570000, 3580000, 5708000, 5718000 (xmin, xmax, ymin, ymax)
#> coord. ref. : +init=epsg:31467 +proj=tmerc +lat_0=0 +lon_0=9 +k=1 +x_0=3500000 +y_0=0 +datum=potsdam +units=m +no_defs +ellps=bessel +towgs84=598.1,73.7,418.2,0.202,0.045,-2.455,6.7
#> data source : in memory

16 https://cran.r-project.org/web/packages/raster/

https://cran.r-project.org/web/packages/raster/
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#> names : DEMTOPx
#> values : 159, 428 (min, max)

The eberg_grids25 object is a SpatialPixelsDataFrame, which is a spatial gridded data structure of
the sp package17 package. The raster package also offers data structures for spatial (gridded)
data, and stores such data as RasterLayer class. Gridded data can be converted from class Spa-
tialPixelsDataFrame to a Raster layer with the raster18 command. The CRS19 command of the sp
package can be used to set a spatial projection. EPSG projection 3146720 is the German coordi-
nate system (each coordinate system has an associated EPSG number that can be obtained from
http://spatialreference.org/).

Conversion from polygon to raster is now possible via the rasterize21 command:

names(eberg_zones)
#> [1] "ZONES"
eberg_zones_r <- rasterize(eberg_zones, r, field="ZONES")
plot(eberg_zones_r)
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Fig. 4.2 Ebergotzen parent material polygon map rasterized to 25 m spatial resolution.

17 https://cran.r-project.org/web/packages/sp/
18 http://www.rdocumentation.org/packages/raster/functions/raster
19 http://www.inside-r.org/packages/cran/sp/docs/CRS
20 http://spatialreference.org/ref/epsg/31467/
21 http://www.rdocumentation.org/packages/raster/functions/rasterize

http://spatialreference.org/
https://cran.r-project.org/web/packages/sp/
http://www.rdocumentation.org/packages/raster/functions/raster
http://www.inside-r.org/packages/cran/sp/docs/CRS
http://spatialreference.org/ref/epsg/31467/
http://www.rdocumentation.org/packages/raster/functions/rasterize


4.2 Preparing soil covariate layers 143

Converting large polygons in R using the raster package can be very time-consuming. To speed
up the rasterization of polygons we highly recommend using instead the fasterize function:

library(sf)
#> Linking to GEOS 3.5.0, GDAL 2.2.2, PROJ 4.8.0
library(fasterize)
#>
#> Attaching package: 'fasterize'
#> The following object is masked from 'package:graphics':
#>
#> plot
eberg_zones_sf <- as(eberg_zones, "sf")
eberg_zones_r <- fasterize(eberg_zones_sf, r, field="ZONES")

fasterize function is an order of magnitude faster and hence more suitable for operational work;
it only works with Simple Feature (sf) objects, however, so the sp polygon object needs to be first
coerced to an sf object.

Another efficient approach to rasterize polygons is to use SAGA GIS, which can handle large data
and is easy to run in parallel. First, you need to export the polygon map to shapefile format which
can be done with commands of the rgdal package22 package:

eberg_zones$ZONES_int <- as.integer(eberg_zones$ZONES)
writeOGR(eberg_zones["ZONES_int"], "extdata/eberg_zones.shp", ".", "ESRI Shapefile")

The writeOGR() command writes a SpatialPolygonsDataFrame (the data structure for polygon data
in R) to an ESRI shapefile. Here we only write the attribute "ZONES_int" to the shapefile. It is,
however, also possible to write all attributes of the SpatialPolygonsDataFrame to a shapefile.

Next, you can locate the (previously installed) SAGA GIS command line program (on Microsoft
Windows OS or Linux system):

if(.Platform$OS.type=="unix"){
saga_cmd = "saga_cmd"

}
if(.Platform$OS.type=="windows"){
saga_cmd = "C:/Progra~1/SAGA-GIS/saga_cmd.exe"

}
saga_cmd
#> [1] "saga_cmd"

and finally use the module grid_gridding to convert the shapefile to a grid:

22 https://cran.r-project.org/web/packages/rgdal/

https://cran.r-project.org/web/packages/rgdal/
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pix = 25
system(paste0(saga_cmd, ' grid_gridding 0 -INPUT \"extdata/eberg_zones.shp\" ',

'-FIELD \"ZONES_int\" -GRID \"extdata/eberg_zones.sgrd\" -GRID_TYPE 0 ',
'-TARGET_DEFINITION 0 -TARGET_USER_SIZE ', pix, ' -TARGET_USER_XMIN ',
extent(r)[1]+pix/2,' -TARGET_USER_XMAX ', extent(r)[2]-pix/2,
' -TARGET_USER_YMIN ', extent(r)[3]+pix/2,' -TARGET_USER_YMAX ',
extent(r)[4]-pix/2))

#> Warning in system(paste0(saga_cmd, " grid_gridding 0 -INPUT \"extdata/
#> eberg_zones.shp\" ", : error in running command
eberg_zones_r2 <- readGDAL("extdata/eberg_zones.sdat")
#> extdata/eberg_zones.sdat has GDAL driver SAGA
#> and has 400 rows and 400 columns

With the system() command we can invoke an operating system (OS) command, here we use it
to run the saga_cmd.exe file from R. The paste0 function is used to paste together a string that is
passed to the system() command. The string starts with the OS command we would like to invoke
(here saga_cmd.exe) followed by input required for the running the OS command.

Note that the bounding box (in SAGA GIS) needs to be defined using the center of the corner
pixel and not the corners, hence we take half of the pixel size for extent coordinates from the
raster package. Also note that the class names have been lost during rasterization (we work with
integers in SAGA GIS), but we can attach them back by using e.g.:

levels(eberg_zones$ZONES)
#> [1] "Clay_and_loess" "Clayey_derivats" "Sandy_material" "Silt_and_sand"
eberg_zones_r2$ZONES <- as.factor(eberg_zones_r2$band1)
levels(eberg_zones_r2$ZONES) <- levels(eberg_zones$ZONES)
summary(eberg_zones_r2$ZONES)
#> Clay_and_loess Clayey_derivats Sandy_material Silt_and_sand
#> 28667 35992 21971 73370
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Fig. 4.3 Ebergotzen zones rasterized to 25 m resolution and with correct factor labels.

4.2.2 Downscaling or upscaling (aggregating) rasters

In order for all covariates to perfectly stack, we also need to adjust the resolution of some covariates
that have either too coarse or too fine a resolution compared to the target resolution. The process
of bringing raster layers to a target grid resolution is also known as resampling. Consider the
following example from the Ebergotzen case study:

data(eberg_grid)
gridded(eberg_grid) <- ~x+y
proj4string(eberg_grid) <- CRS("+init=epsg:31467")
names(eberg_grid)
#> [1] "PRMGEO6" "DEMSRT6" "TWISRT6" "TIRAST6" "LNCCOR6"

In this case we have a few layers that we would like to use for spatial prediction in combination
with the maps produced in the previous sections, but their resolution is 100 m i.e. about 16 times
coarser. Probably the most robust way to resample rasters is to use the gdalwarp23 function from
the GDAL software. Assuming that you have already installed GDAL, you only need to locate the
program on your system, and then you can again run gdalwarp24 via the system command:

23 http://www.gdal.org/gdalwarp.html
24 http://www.gdal.org/gdalwarp.html

http://www.gdal.org/gdalwarp.html
http://www.gdal.org/gdalwarp.html
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writeGDAL(eberg_grid["TWISRT6"], "extdata/eberg_grid_TWISRT6.tif")
system(paste0('gdalwarp extdata/eberg_grid_TWISRT6.tif',

' extdata/eberg_grid_TWISRT6_25m.tif -r \"cubicspline\" -te ',
paste(as.vector(extent(r))[c(1,3,2,4)], collapse=" "),
' -tr ', pix, ' ', pix, ' -overwrite'))

#> Warning in system(paste0("gdalwarp extdata/eberg_grid_TWISRT6.tif", "
#> extdata/eberg_grid_TWISRT6_25m.tif -r \"cubicspline\" -te ", : error in
#> running command

The writeGDAL command writes the TWISRT6 grid, that is stored in the eberg_grid grid stack, to a
TIFF file. This TIFF is subsequently read by the gdalwarp function and resampled to a 25 m TIFF
file using cubicspline, which will fill in values between original grid nodes using smooth surfaces.
Note that the paste0 function in the system() command pastes together the following string:

"C:/Progra~1/GDAL/gdalwarp.exe eberg_grid_TWISRT6.tif
eberg_grid_TWISRT6_25m.tif -r \"cubicspline\"
-te 3570000 5708000 3580000 5718000 -tr 25 25 -overwrite"

We can compare the two maps (the original and the downscaled) next to each other by using:

 

 

Fig. 4.4 Original TWI vs downscaled map from 100 m to 25 m.

The map on the right looks much smoother of course (assuming that this variable varies contin-
uously in space, this could very well be an accurate picture), but it is important to realize that
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downscaling can only be implemented up to certain target resolution i.e. only for certain features.
For example, downscaling TWI from 100 to 25 m is not much of problem, but to go beyond 10
m would probably result in large differences from a TWI calculated at 10 m resolution (in other
words: be careful with downscaling because it is often not trivial).

The opposite process to downscaling is upscaling or aggregation. Although this one can also
potentially be tricky, it is a much more straightforward process than downscaling. We recommend
using the average method in GDAL for aggregating values e.g.:

system(paste0('gdalwarp extdata/eberg_grid_TWISRT6.tif',
' extdata/eberg_grid_TWISRT6_250m.tif -r \"average\" -te ',
paste(as.vector(extent(r))[c(1,3,2,4)], collapse=" "),
' -tr 250 250 -overwrite'))

#> Warning in system(paste0("gdalwarp extdata/eberg_grid_TWISRT6.tif", "
#> extdata/eberg_grid_TWISRT6_250m.tif -r \"average\" -te ", : error in
#> running command

 

 

Fig. 4.5 Original TWI vs aggregated map from 100 m to 250 m.
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4.2.3 Deriving DEM parameters using SAGA GIS

Now that we have established a connection between R and SAGA GIS, we can also use SAGA
GIS to derive some standard DEM parameters of interest to soil mapping. To automate further
processing, we make the following function:

saga_DEM_derivatives <- function(INPUT, MASK=NULL,
sel=c("SLP","TWI","CRV","VBF","VDP","OPN","DVM")){

if(!is.null(MASK)){
## Fill in missing DEM pixels:
suppressWarnings( system(paste0(saga_cmd,

' grid_tools 25 -GRID=\"', INPUT,
'\" -MASK=\"', MASK, '\" -CLOSED=\"',
INPUT, '\"')) )

}
## Slope:
if(any(sel %in% "SLP")){

try( suppressWarnings( system(paste0(saga_cmd,
' ta_morphometry 0 -ELEVATION=\"',
INPUT, '\" -SLOPE=\"',
gsub(".sgrd", "_slope.sgrd", INPUT),
'\" -C_PROF=\"',
gsub(".sgrd", "_cprof.sgrd", INPUT), '\"') ) ) )

}
## TWI:
if(any(sel %in% "TWI")){

try( suppressWarnings( system(paste0(saga_cmd,
' ta_hydrology 15 -DEM=\"',
INPUT, '\" -TWI=\"',
gsub(".sgrd", "_twi.sgrd", INPUT), '\"') ) ) )

}
## MrVBF:
if(any(sel %in% "VBF")){

try( suppressWarnings( system(paste0(saga_cmd,
' ta_morphometry 8 -DEM=\"',
INPUT, '\" -MRVBF=\"',
gsub(".sgrd", "_vbf.sgrd", INPUT),
'\" -T_SLOPE=10 -P_SLOPE=3') ) ) )

}
## Valley depth:
if(any(sel %in% "VDP")){

try( suppressWarnings( system(paste0(saga_cmd,
' ta_channels 7 -ELEVATION=\"',
INPUT, '\" -VALLEY_DEPTH=\"',
gsub(".sgrd", "_vdepth.sgrd",

INPUT), '\"') ) ) )
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}
## Openness:
if(any(sel %in% "OPN")){

try( suppressWarnings( system(paste0(saga_cmd,
' ta_lighting 5 -DEM=\"',
INPUT, '\" -POS=\"',
gsub(".sgrd", "_openp.sgrd", INPUT),
'\" -NEG=\"',
gsub(".sgrd", "_openn.sgrd", INPUT),
'\" -METHOD=0' ) ) ) )

}
## Deviation from Mean Value:
if(any(sel %in% "DVM")){

suppressWarnings( system(paste0(saga_cmd,
' statistics_grid 1 -GRID=\"',
INPUT, '\" -DEVMEAN=\"',
gsub(".sgrd", "_devmean.sgrd", INPUT),
'\" -RADIUS=11' ) ) )

}
}

To run this function we only need DEM as input:

writeGDAL(eberg_grid["DEMSRT6"], "extdata/DEMSRT6.sdat", "SAGA")
saga_DEM_derivatives("DEMSRT6.sgrd")

which processes all DEM derivatives at once. We can plot them using:

dem.lst <- list.files("extdata", pattern=glob2rx("^DEMSRT6_*.sdat"), full.names = TRUE)
plot(raster::stack(dem.lst), col=rev(magma(10, alpha = 0.8)))
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Fig. 4.6 Some standard DEM derivatives calculated using SAGA GIS.

This function can now be used with any DEM to derive a standard set of 7–8 DEM parameters
consisting of slope and curvature, TWI and MrVBF, positive and negative openness, valley depth
and deviation from mean value. You could easily add more parameters to this function and then
test if some of the other DEM derivatives can help improve mapping soil properties and classes.
Note that SAGA GIS will by default optimize computing of DEM derivatives by using most of
the available cores to compute (parallelization is turned on automatically).
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4.2.4 Filtering out missing pixels and artifacts

After bringing all covariates to the same grid definition, remaining problems for using covariates
in spatial modelling may include:

• Missing pixels,

• Artifacts and noise,

• Multicolinearity (i.e. data overlap),

In a stack with tens of rasters, the weakest layer (i.e. the layer with greatest number of missing
pixels or largest number of artifacts) could cause serious problems for producing soil maps as the
missing pixels and artifacts would propagate to predictions: if only one layer in the raster stack
misses values then predictive models might drop whole rows in the predictions even though data
is available for 95% of rows. Missing pixels occur for various reasons: in the case of remote sensing,
missing pixels can be due to clouds or similar; noise is often due to atmospheric conditions. Missing
pixels (as long as we are dealing with only a few patches of missing pixels) can be efficiently filtered
by using for example the gap filling functionality25 available in the SAGA GIS e.g.:

par(mfrow=c(1,2))
image(raster(eberg_grid["test"]), col=SAGA_pal[[1]], zlim=zlim, main="Original", asp=1)
image(raster("test.sdat"), col=SAGA_pal[[1]], zlim=zlim, main="Filtered", asp=1)

In this example we use the same input and output file for filling in gaps. There are several other
gap filling possibilities in SAGA GIS including Close Gaps with Spline, Close Gaps with Stepwise
Resampling and Close One Cell Gaps. Not all of these are equally applicable to all missing pixel
problems, but having <10% of missing pixels is often not much of a problem for soil mapping.

Another elegant way to filter the missing pixels, to reduce noise and to reduce data overlap is to
use Principal Components26 transformation of original data. This is available also via the GSIF
function spc:

data(eberg_grid)
gridded(eberg_grid) <- ~x+y
proj4string(eberg_grid) <- CRS("+init=epsg:31467")
formulaString <- ~ PRMGEO6+DEMSRT6+TWISRT6+TIRAST6
eberg_spc <- GSIF::spc(eberg_grid, formulaString)
names(eberg_spc@predicted) # 11 components on the end;

25 http://saga-gis.org/saga_module_doc/2.2.7/grid_tools_7.html
26 http://www.rdocumentation.org/packages/stats/functions/prcomp

http://saga-gis.org/saga_module_doc/2.2.7/grid_tools_7.html
http://www.rdocumentation.org/packages/stats/functions/prcomp
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Fig. 4.7 11 PCs derived using input Ebergotzen covariates.

The advantages of using the spc function are:

• All output soil covariates are numeric (and not a mixture of factors and numeric),

• The last 1-2 PCs often contain signal noise and could be excluded from modelling,

• In subsequent analysis it becomes easier to remove covariates that do not help in modelling
(e.g. by using step-wise selection and similar),

A disadvantage of using spc is that these components are often abstract so that interpretation of
correlations can become difficult. Also, if one of the layers contains many factor levels, then the
number of output covariates might explode, which becomes impractical as we should then have at
least 10 observations per covariate to avoid overfitting.

4.2.5 Overlaying and subsetting raster stacks and points

Now that we have prepared all covariates (resampled them to the same grid and filtered out all
problems), we can proceed with running overlays and fitting statistical models. Assuming that we
deal with a large number of files, an elegant way to read all those into R is by using the raster
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package, especially the stack27 and raster28 commands. In the following example we can list all
files of interest, and then read them all at once:

library(raster)
grd.lst <- list.files(pattern="25m")
grd.lst
grid25m <- stack(grd.lst)
grid25m <- as(grid25m, "SpatialGridDataFrame")
str(grid25m)

One could now save all the prepared covariates stored in SpatialGridDataFrame as an RDS data
object for future use.

saveRDS(grid25m, file = "extdata/covariates25m.rds")

To overlay rasters and points and prepare a regression matrix, we can either use the over29 function
from the sp package, or extract30 function from the raster package. By using the raster package,
one can run overlay even without reading the rasters into memory:

library(sp)
data(eberg)
coordinates(eberg) <- ~X+Y
proj4string(eberg) <- CRS("+init=epsg:31467")
ov <- as.data.frame(extract(stack(grd.lst), eberg))
str(ov[complete.cases(ov),])

If the raster layers can not be stacked and if each layer is available in a different projection system,
you can also create a function that reprojects points to the target raster layer projection system:

overlay.fun <- function(i, y){
raster::extract(raster(i), na.rm=FALSE,

spTransform(y, proj4string(raster(i))))}

which can also be run in parallel for example by using the parallel package:

ov <- data.frame(mclapply(grd.lst, FUN=overlay.fun, y=eberg))
names(ov) <- basename(grd.lst)

27 http://www.rdocumentation.org/packages/raster/functions/stack
28 http://www.rdocumentation.org/packages/raster/functions/raster
29 http://www.rdocumentation.org/packages/sp/functions/over
30 http://www.rdocumentation.org/packages/raster/functions/extract

http://www.rdocumentation.org/packages/raster/functions/stack
http://www.rdocumentation.org/packages/raster/functions/raster
http://www.rdocumentation.org/packages/sp/functions/over
http://www.rdocumentation.org/packages/raster/functions/extract
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In a similar way, one could also make wrapper functions that downscale/upscale grids, then filter
missing values and stack all data together so that it becomes available in the working memory (sp
grid or pixels object). Overlay and model fitting is also implemented directly in the GSIF package,
so any attempt to fit models will automatically perform overlay.

4.2.6 Working with large(r) rasters

As R is often inefficient in handling large objects in memory (such as large raster images), a good
strategy to run raster processing in R is to consider using for example the clusterR function from
the raster31 package, which automatically parallelizes use of raster functions. To have full control
over parallelization, you can alternatively tile large rasters using the getSpatialTiles function from
the GSIF package and process them as separate objects in parallel. The following examples show
how to run a simple function in parallel on tiles and then mosaic these tiles after all processing
has been completed. Consider for example the sample GeoTiff from the rgdal package:

fn = system.file("pictures/SP27GTIF.TIF", package = "rgdal")
obj <- rgdal::GDALinfo(fn)
#> Warning in rgdal::GDALinfo(fn): statistics not supported by this driver

We can split that object in 35 tiles, each of 5 x 5 km in size by running:

tiles <- GSIF::getSpatialTiles(obj, block.x=5000, return.SpatialPolygons = FALSE)
tiles.pol <- GSIF::getSpatialTiles(obj, block.x=5000, return.SpatialPolygons = TRUE)
tile.pol <- SpatialPolygonsDataFrame(tiles.pol, tiles)
plot(raster(fn), col=bpy.colors(20))
lines(tile.pol, lwd=2)

31 https://cran.r-project.org/package=raster

https://cran.r-project.org/package=raster
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Fig. 4.8 Example of a tiling system derived using the GSIF::getSpatialTiles function.

rgdal further allows us to read only a single tile of the GeoTiff by using the offset and region.dim
arguments:

x = readGDAL(fn, offset=unlist(tiles[1,c("offset.y","offset.x")]),
region.dim=unlist(tiles[1,c("region.dim.y","region.dim.x")]),
output.dim=unlist(tiles[1,c("region.dim.y","region.dim.x")]), silent = TRUE)

spplot(x)

 

 

Fig. 4.9 A tile produced from a satellite image in the example in the previous figure.
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We would like to run a function on this raster in parallel, for example a simple function that
converts values to 0/1 values based on a threshold:

fun_mask <- function(i, tiles, dir="./tiled/", threshold=190){
out.tif = paste0(dir, "T", i, ".tif")
if(!file.exists(out.tif)){

x = readGDAL(fn, offset=unlist(tiles[i,c("offset.y","offset.x")]),
region.dim=unlist(tiles[i,c("region.dim.y","region.dim.x")]),
output.dim=unlist(tiles[i,c("region.dim.y","region.dim.x")]),
silent = TRUE)

x$mask = ifelse(x$band1>threshold, 1, 0)
writeGDAL(x["mask"], type="Byte", mvFlag = 255,

out.tif, options=c("COMPRESS=DEFLATE"))
}

}

This can now be run through the mclapply function from the parallel package (which automatically
employs all available cores):

x0 <- mclapply(1:nrow(tiles), FUN=fun_mask, tiles=tiles)

If we look in the tiles folder, this should show 35 newly produced GeoTiffs. These can be further
used to construct a virtual mosaic by using:

t.lst <- list.files(path="extdata/tiled", pattern=glob2rx("^T*.tif$"),
full.names=TRUE, recursive=TRUE)

cat(t.lst, sep="\n", file="SP27GTIF_tiles.txt")
system('gdalbuildvrt -input_file_list SP27GTIF_tiles.txt SP27GTIF.vrt')
system('gdalwarp SP27GTIF.vrt SP27GTIF_mask.tif -ot \"Byte\"',
' -dstnodata 255 -co \"BIGTIFF=YES\" -r \"near\" -overwrite -co \"COMPRESS=DEFLATE\"')

Note we use a few important settings here for GDAL e.g. -overwrite -co "COMPRESS=DEFLATE" to
overwrite the GeoTiff and internally compress it to save space, and -r "near" basically specifies
that no resampling is applied, just binding of tiles together. Also, if the output GeoTiff is HUGE,
you will most likely have to turn on -co "BIGTIFF=YES" otherwise gdalwarp would not run through.
The output mosaic looks like this:
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Fig. 4.10 Final processed output.

This demonstrates that R can be used to compute with large rasters, provided that these operations
can be parallelized. Suggested best practice for this is to: (1) design a tiling system that optimizes
use of RAM and read/write speed of a disk, (2) prepare and test a function that can then be run
in parallel, and (3) stitch back all tiles to create a single large raster using gdalwarp.

Note that such tiling and stitching can not be applied universally to all problems e.g. functions that
require global geographical search or all data in the raster. In such cases tiling should be applied
with overlap (to minimize boundary effects) or to irregular tiling systems (e.g. per watershed).
Once an optimal tiling system and function is prepared, R is no longer limited to running efficient
computing, but only dependent on how much RAM and how many cores you have available i.e. it
becomes more of a hardware than a software problem.

4.3 Summary points

Soil covariate layers are one of the key inputs to predictive soil mapping. Before any spatial layer
can be used for modeling, it typically needs to be preprocessed to remove artifacts, resample to a
standard resolution, fill in any missing values etc. All these operations can be successfully run by
combining R and Open Source GIS software and by careful programming and optimization.

Preparing soil covariates can often be time and resources consuming so careful preparation and
prioritization of processing is highly recommended. Hengl et al (2017a) show that, for soil types
and soil textures, DEM-parameters, i.e. soil forming factors of relief, especially flow-based DEM-
indices, emerge as the second-most dominant covariates. These results largely correspond with
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conventional soil survey knowledge (surveyors have been using relief as a key guideline to delineate
soil bodies for decades).

Although lithology is often not in the list of the top 15 most important predictors for PSM projects,
spatial patterns of lithologic classes can often be distinctly recognized in the output predictions.
This is especially true for soil texture fractions and coarse fragments. In general, for predicting
soil chemical properties, climatic variables (especially precipitation) and surface reflectance seem
to be the most important, while for soil classes and soil physical properties it is a combination of
relief, vegetation dynamics and parent material. Investing extra time in preparing a better map
of soil parent material is hence often a good idea.

Other potentially useful covariates for predicting soil properties and classes could be maps of paleo
i.e. pre-historic climatic conditions of soil formation, e.g. glacial landscapes and processes, past
climate conditions and similar. These could likely become significant predictors of many current
soil characteristics. Information on pre-historic climatic conditions and land use is unfortunately
often not available, especially not at detailed cartographic scales, although there are now sev-
eral global products that represent, for example, dynamics of land use / changes of land cover
(see e.g. HYDE data set (Klein Goldewijk et al, 2011)) through the past 1500+ years. As the
spatial detail and completeness of such pre-historic maps increases, they will become potentially
interesting covariates for global soil modeling.

USA’s NASA and USGS, with its SRTM, MODIS, Landsat, ICESat and similar civil-applications
missions will likely remain the main source of spatial covariate data to support global and local
soil mapping initiatives.



Chapter 5

Statistical theory for predictive soil mapping

Edited by: Hengl T., Heuvelink G.B.M and MacMillan R. A.

5.1 Aspects of spatial variability of soil variables

In this chapter we review the statistical theory for soil mapping. We focus on models considered
most suitable for practical implementation and use with soil profile data and gridded covariates,
and we provide the mathematical-statistical details of the selected models. We start by revisiting
some basic statistical aspects of soil mapping, and conclude by illustrating a proposed framework
for reproducible, semi-automated mapping of soil variables using simple, real-world examples.

The code and examples are provided only for illustration. More complex predictive modeling is
described in chapter 6. To install and optimize all packages used in this chapter please refer to
section 2.5.

5.1.1 Modelling soil variability

Soils vary spatially in a way that is often only partially understood. The main (deterministic)
causes of soil spatial variation are the well-known causal factors — climate, organisms, relief,
parent material and time — but how these factors jointly shape the soil over time is a very
complex process that is (still) extremely difficult to model mechanistically. Moreover, mechanistic
modelling approaches require large sets of input data that are realistically not available in practice.
Some initial steps have been made, notably for mechanistic modelling of vertical soil variation
(see e.g. Finke and Hutson (2008), Sommer et al (2008), Minasny et al (2008), and Vanwalleghem
et al (2010)), but existing approaches are still rudimentary and cannot be used for operational soil
mapping. Mainstream soil mapping therefore takes an empirical approach in which the relationship
between the soil variable of interest and causal factors (or their proxies) is modelled statistically,
using various types of regression models. The explanatory variables used in regression are also
known as covariates (a list of common covariates used in soil mapping is provided in chapter 4).

159
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Regression models explain only part of the variation (i.e. variance) of the soil variable of interest,
because:

• The structure of the regression model does not represent the true mechanistic relationship
between the soil and its causal factors.

• The regression model includes only a few of the many causal factors that formed the soil.

• The covariates used in regression are often only incomplete proxies of the true soil forming
factors.

• The covariates often contain measurement errors and/or are measured at a much coarser scale
(i.e. support) than that of the soil that needs to be mapped.

As a result, soil spatial regression models will often display a substantial amount of residual
variance, which may well be larger than the amount of variance explained by the regression itself.
The residual variation can subsequently be analysed on spatial structure through a variogram
analysis. If there is spatial structure, then kriging the residual and incorporating the result of this
in mapping can improve the accuracy of soil predictions (Hengl et al, 2007a).

5.1.2 Universal model of soil variation

From a statistical point of view, it is convenient to distinguish between three major components
of soil variation: (1) deterministic component (trend), (2) spatially correlated component and (3)
pure noise. This is the basis of the universal model of soil variation (Burrough and McDonnell,
1998; Webster and Oliver, 2001, p.133):

𝑍(𝑠) = 𝑚(𝑠) + 𝜀′(𝑠) + 𝜀″(𝑠) (5.1)

where 𝑠 is two-dimensional location, 𝑚(𝑠) is the deterministic component, 𝜀′(𝑠) is the spatially
correlated stochastic component and 𝜀″(𝑠) is the pure noise (micro-scale variation and measure-
ment error). This model was probably first introduced by Matheron (1969), and has been used
as a general framework for spatial prediction of quantities in a variety of environmental research
disciplines.

The universal model of soil variation assumes that there are three major components of soil varia-
tion: (1) the deterministic component (function of covariates), (2) spatially correlated component
(treated as stochastic) and (3) pure noise.

The universal model of soil variation model (Eq.(5.1)) can be further generalised to three-
dimensional space and the spatio-temporal domain (3D+T) by letting the variables also depend
on depth and time:

𝑍(𝑠, 𝑑, 𝑡) = 𝑚(𝑠, 𝑑, 𝑡) + 𝜀′(𝑠, 𝑑, 𝑡) + 𝜀″(𝑠, 𝑑, 𝑡) (5.2)
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where 𝑑 is depth expressed in meters downward from the land surface and 𝑡 is time. The determin-
istic component 𝑚 may be further decomposed into parts that are purely spatial, purely temporal,
purely depth-related or mixtures of all three. Space-time statistical soil models are discussed by
Grunwald (2005b), but this area of soil mapping is still rather experimental.

In this chapter, we mainly focus on purely 2D models but also present some theory for 3D models,
while 2D+T and 3D+T models of soil variation are significantly more complex (Fig. 5.1).
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Fig. 5.1 Number of variogram parameters assuming an exponential model, minimum number of samples and
corresponding increase in number of prediction locations for 2D, 3D, 2D+T and 3D+T models of soil variation.
Here “altitude” refers to vertical distance from the land surface, which is in case of soil mapping often expressed
as negative vertical distance from the land surface.

One of the reasons why 2D+T and 3D+T models of soil variations are rare is because there are
very few point data sets that satisfy the requirements for analysis. One national soil data set that
could be analyzed using space-time geostatistics is, for example, the Swiss soil-monitoring network
(NABO) data set (Desaules et al, 2010), but even this data set does not contain complete profile
descriptions following international standards. At regional and global scales it would be even more
difficult to find enough data to fit space-time models (and to fit 3D+T variogram models could
be even more difficult). For catchments and plots, space-time datasets of soil moisture have been
recorded and used in space-time geostatistical modelling (see e.g. Snepvangers et al (2003) and
Jost et al (2005)).

Statistical modelling of the spatial distribution of soils requires field observations because most
statistical methods are data-driven. The minimum recommended number of points required to fit
2D geostatistical models, for example, is in the range 50–100 points, but this number increases
with any increase in spatial or temporal dimension (Fig. 5.1). The Cookfarm data set for example
contains hundreds of thousands of observations, although the study area is relatively small and
there are only ca. 50 station locations (Gasch et al, 2015).
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The deterministic and stochastic components of soil spatial variation are separately described in
more detail in subsequent sections, but before we do this, we first address soil vertical variability
and how it can be modelled statistically.

5.1.3 Modelling the variation of soil with depth

Soil properties vary with depth, in some cases much more than in the horizontal direction. There
is an increasing awareness that the vertical dimension is important and needs to be incorporated
in soil mapping. For example, many spatial prediction models are built using ambiguous vertical
reference frames such as predicted soil property for “top-soil” or “A-horizon”. Top-soil can refer
to different depths / thicknesses and so can the A-horizon range from a few centimeters to over
one meter. Hence before fitting a 2D spatial model to soil profile data, it is a good idea to stan-
dardize values to standard depths, otherwise soil observation depth becomes an additional source
of uncertainty. For example soil organic carbon content is strongly controlled by soil depth, so
combining values from two A horizons one thick and the other thin, would increase the complexity
of 2D soil mapping because a fraction of the variance is controlled by the depth, which is ignored.

The concept of perfectly homogeneous soil horizons is often too restrictive and can be better
replaced with continuous representations of soil vertical variation i.e. soil-depth functions or curves.
Variation of soil properties with depth is typically modelled using one of two approaches (Fig. 5.2):

1. Continuous vertical variation — This assumes that soil variables change continuously with
depth. The soil-depth relationship is modelled using either:

1. Parametric model — The relationship is modelled using mathematical functions such as
logarithmic or exponential decay functions.

2. Non-parametric model — The soil property changes continuously but without obvious reg-
ularity with depth. Changes in values are modelled using locally fitted functions such as
piecewise linear functions or splines.

2. Abrupt or stratified vertical variation — This assumes that soil horizons are distinct and homo-
geneous bodies of soil material and that soil properties are constant within horizons and change
abruptly at boundaries between horizons.

Combinations of the two approaches are also possible, such as the use of exponential decay func-
tions per soil horizon (Kempen et al, 2011).

Parametric continuous models are chosen to reflect pedological knowledge e.g. knowledge of soil
forming processes. For example, organic carbon usually originates from plant production i.e. litter
or roots. Generally, the upper layers of the soil tend to have greater organic carbon content, which
decreases continuously with depth, so that the soil-depth relationship can be modelled with a
negative-exponential function:

ORC(𝑑) = ORC(𝑑0) ⋅ exp(−𝜏 ⋅ 𝑑) (5.3)
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where ORC(𝑑) is the soil organic carbon content at depth (𝑑), ORC(𝑑0) is the organic carbon content at
the soil surface and 𝜏 is the rate of decrease with depth. This model has only two parameters that
must be chosen such that model averages over sampling horizons match those of the observations
as closely as possible. Once the model parameters have been estimated, we can easily predict
concentrations for any depth interval.

Consider for example this sample profile from Nigeria:

lon = 3.90; lat = 7.50; id = "ISRIC:NG0017"; FAO1988 = "LXp"
top = c(0, 18, 36, 65, 87, 127)
bottom = c(18, 36, 65, 87, 127, 181)
ORCDRC = c(18.4, 4.4, 3.6, 3.6, 3.2, 1.2)
munsell = c("7.5YR3/2", "7.5YR4/4", "2.5YR5/6", "5YR5/8", "5YR5/4", "10YR7/3")
## prepare a SoilProfileCollection:
prof1 <- plyr::join(data.frame(id, top, bottom, ORCDRC, munsell),

data.frame(id, lon, lat, FAO1988), type='inner')
#> Joining by: id
prof1$mdepth <- prof1$top+(prof1$bottom-prof1$top)/2

we can fit a log-log model by using e.g.:

d.lm <- glm(ORCDRC ~ log(mdepth), data=prof1, family=gaussian(log))
options(list(scipen=3, digits=2))
d.lm$fitted.values
#> 1 2 3 4 5 6
#> 18.1 6.3 3.5 2.4 1.7 1.2

which shows that the log-log fit comes relatively close to the actual values. Another possibility
would be to fit a power-law model:

ORC(𝑑) = 𝑎 ⋅ 𝑑𝑏 (5.4)

A disadvantage of a single parametric soil property-depth model along the entire soil profile is that
these completely ignore stratigraphy and abrupt changes at the boundaries between soil horizons.
For example, Kempen et al (2011) show that there are many cases where highly contrasting layers
of peat can be found buried below the surface due to cultivation practices or holocene drift sand.
The model given by Eq.(5.4) illustrated in Fig. 5.2 (left) will not be able to represent such abrupt
changes.

Before fitting a 2D spatial prediction model to soil profile data, it is important to standardize values
to standard depths, otherwise soil observation depth can be an additional source of uncertainty.

Non-parametric soil-depth functions are more flexible and can represent observations of soil prop-
erty averages for sampling layers or horizons more accurately. One such technique that is par-
ticularly interesting is equal-area or mass-preserving splines (Bishop et al, 1999; Malone et al,
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2009) because it ensures that, for each sampling layer (usually a soil horizon), the average of the
spline function equals the measured value for the horizon. Disadvantages of the spline model are
that it may not fit well if there are few observations along the soil profile and that it may cre-
ate unrealistic values (through overshoots or extrapolation) in some instances, for example near
the surface. Also, mass-preserving splines cannot accommodate discontinuities unless, of course,
separate spline functions are fitted above and below the discontinuity.
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Fig. 5.2 Vertical variation in soil carbon modelled using a logarithmic function (left) and a mass-preserving
spline (right) with abrupt changes by horizon ilustrated with solid lines.

To fit mass preserving splines we can use:

library(aqp)
#> This is aqp 1.17
#>
#> Attaching package: 'aqp'
#> The following object is masked from 'package:base':
#>
#> union
library(rgdal)
#> Loading required package: sp
#> rgdal: version: 1.3-6, (SVN revision 773)
#> Geospatial Data Abstraction Library extensions to R successfully loaded
#> Loaded GDAL runtime: GDAL 2.2.2, released 2017/09/15
#> Path to GDAL shared files: /usr/share/gdal/2.2
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#> GDAL binary built with GEOS: TRUE
#> Loaded PROJ.4 runtime: Rel. 4.8.0, 6 March 2012, [PJ_VERSION: 480]
#> Path to PROJ.4 shared files: (autodetected)
#> Linking to sp version: 1.3-1
library(GSIF)
#> GSIF version 0.5-5 (2019-01-04)
#> URL: http://gsif.r-forge.r-project.org/
#>
#> Attaching package: 'GSIF'
#> The following object is masked _by_ '.GlobalEnv':
#>
#> munsell
prof1.spc <- prof1
depths(prof1.spc) <- id ~ top + bottom
#> Warning: converting IDs from factor to character
site(prof1.spc) <- ~ lon + lat + FAO1988
coordinates(prof1.spc) <- ~ lon + lat
proj4string(prof1.spc) <- CRS("+proj=longlat +datum=WGS84")
## fit a spline:
ORCDRC.s <- mpspline(prof1.spc, var.name="ORCDRC", show.progress=FALSE)
#> Fitting mass preserving splines per profile...
ORCDRC.s$var.std
#> 0-5 cm 5-15 cm 15-30 cm 30-60 cm 60-100 cm 100-200 cm soil depth
#> 1 21 17 7.3 3.3 3.6 1.8 181

where var.std shows average fitted values for standard depth intervals (i.e. those given in the
GlobalSoilMap specifications), and var.1cm are the values fitted at 1–cm increments (Fig. 5.2).

A disadvantage of using mathematical functions to convert soil observations at specific depth
intervals to continuous values along the whole profile is that these values are only estimates
with associated estimation errors. If estimates are treated as if these were observations then an
important source of error is ignored, which may jeopardize the quality of the final soil predictions
and in particular the associated uncertainty (see further section 5.3). This problem can be avoided
by taking, for example, a 3D modelling approach (Poggio and Gimona, 2014; Hengl et al, 2015a),
in which model calibration and spatial interpolation are based on the original soil observations
directly (although proper use of this requires that the differences in vertical support between
measurements are taken into account also). We will address this also in later sections of this
chapter, among others in section 6.1.4.

Soil property-depth relationships are commonly modelled using various types of mathematical
functions. Mass-preserving splines, which ensure that the average of the spline function equals
the measured value for each sampling layer or horizon, can be used to convert measurements
per layer to point values along the profile. Because soils can show both abrupt and continuous
transitions within the same profile, no simple spline model is universally valid and case-dependent
adjustments often need to be made.
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5.1.4 Vertical aggregation of soil properties

As mentioned previously, soil variables refer to aggregate values over specific depth intervals (see
Fig. 5.2). For example, the organic carbon content is typically observed per soil horizon with values
in e.g. g/kg or permilles (Conant et al, 2010; Baritz et al, 2010; Panagos et al, 2013). The Soil
Organic Carbon Storage (or Soil Organic Carbon Stock) in the whole profile can be calculated by
using Eq (7.1). Once we have determined soil organic carbon storage (OCS) per horizon, we can
derive the total organic carbon in the soil by summing over all (𝐻) horizons:

OCS =
𝐻

∑
ℎ=1

OCSℎ (5.5)

Obviously, the horizon-specific soil organic carbon content (ORCℎ) and total soil organic carbon
content (OCS) are NOT the same variables and need to be analysed and mapped separately.
In the case of pH (PHI) we usually do not aim at estimating the actual mass or quantity of hydrogen
ions. To represent a soil profile with a single number, we may take a weighted mean of the measured
pH values per horizon:

PHI =
𝐻

∑
ℎ=1

𝑤ℎ ⋅ PHIℎ;
𝐻

∑
ℎ=1

𝑤ℎ = 1 (5.6)

where the weights can be chosen proportional to the horizon thickness:

𝑤ℎ = HSIZEℎ
𝐻
∑
ℎ=1

HSIZEℎ

(5.7)

Thus, it is important to be aware that all soil variables: (A) can be expressed as relative (percent-
ages) or absolute (mass / quantities) values, and (B) refer to specific horizons or depth intervals
or to the whole soil profile.
Similar spatial support-effects show up in the horizontal, because soil observations at point locations
are not the same as average or bulk soil samples taken by averaging a large number of point
observations on a site or plot (Webster and Oliver, 2001).

Soil variables can refer to a specific depth interval or to the whole profile. The differences in spatial
patterns between variables representing fundamentally the same feature (e.g. soil organic carbon
in of a specific soil horizon or soil layer and total organic carbon stock in of the whole profile),
but at different spatial and vertical support, can be significant.

In order to avoid misinterpretation of the results of mapping, we recommend that any delivered
map of soil properties should specify the support size in the vertical and lateral directions, the
analysis method (detection limit) and measurement units. Such information can be included in
the metadata and/or in any key visualization or plot. Likewise, any end-user of soil data should
specify whether estimates of the relative or total organic carbon, aggregated or at 2D/3D point
support are required.
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5.2 Spatial prediction of soil variables

5.2.1 Main principles

“Pragmatically, the goal of a model is to predict, and at the same time scientists want to incorporate
their understanding of how the world works into their models” (Cressie and Wikle, 2011). In general
terms, spatial prediction consists of the following seven steps (Fig. 5.3):

1. Select the target variable, scale (spatial resolution) and associated geographical region of interest;

2. Define a model of spatial variation for the target variable;

3. Prepare a sampling plan and collect samples and relevant explanatory variables;

4. Estimate the model parameters using the collected data;

5. Derive and apply the spatial prediction method associated with the selected model;

6. Evaluate the spatial prediction outputs and collect new data / run alternative models if necessary;

7. Use the outputs of the spatial prediction process for decision making and scenario testing.
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Fig. 5.3 From data to knowledge and back: the general spatial prediction scheme applicable to many environ-
mental sciences.
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The spatial prediction process is repeated at all nodes of a grid covering 𝐷 (or a space-time domain
in case of spatiotemporal prediction) and produces three main outputs:

1. Estimates of the model parameters (e.g., regression coefficients and variogram parameters),
i.e. the model;

2. Predictions at new locations, i.e. a prediction map;

3. Estimate of uncertainty associated with the predictions, i.e. a prediction error map.

It is clear from Fig. 5.3 that the key steps in the mapping procedure are: (a) choice of the sampling
scheme (e.g. Ng et al (2018) and Brus (2019)), (b) choice of the model of spatial variation (e.g.
Diggle and Ribeiro Jr (2007)), and (c) choice of the parameter estimation technique (e.g. Lark et al
(2006)). When the sampling scheme is given and cannot be changed, the focus of optimization
of the spatial prediction process is then on selecting and fine-tuning the best performing spatial
prediction method.

In a geostatistical framework, spatial prediction is estimation of values of some target variable 𝑍
at a new location (𝑠0) given the input data:

̂𝑍(𝑠0) = 𝐸 {𝑍(𝑠0)|𝑧(𝑠𝑖), 𝑋(𝑠0), 𝑖 = 1, ..., 𝑛} (5.8)

where the 𝑧(𝑠𝑖) are the input set of observations of the target variable, 𝑠𝑖 is a geographical location,
𝑛 is the number of observations and 𝑋(𝑠0) is a list of covariates or explanatory variables, available
at all prediction locations within the study area of interest (𝑠 ∈ 𝔸). To emphasise that the model
parameters also influence the outcome of the prediction process, this can be made explicit by
writing (Cressie and Wikle, 2011):

[𝑍|𝑌 , 𝜃] (5.9)

where 𝑍 is the data, 𝑌 is the (hidden) process that we are predicting, and 𝜃 is a list of model
parameters e.g. trend coefficients and variogram parameters.

There are many spatial prediction methods for generating spatial predictions from soil samples and
covariate information. All differ in the underlying statistical model of spatial variation, although
this model is not always made explicit and different methods may use the same statistical model.
A review of currently used digital soil mapping methods is given, for example, in McBratney et al
(2011), while the most extensive review can be found in McBratney et al (2003) and McBratney
et al (2018). Li and Heap (2010) list 40+ spatial prediction / spatial interpolation techniques.
Many spatial prediction methods are often just different names for essentially the same thing.
What is often known under a single name, in the statistical, or mathematical literature, can be
implemented through different computational frameworks, and lead to different outputs (mainly
because many models are not written out in the finest detail and leave flexibility for actual im-
plementation).
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5.2.2 Soil sampling

A soil sample is a collection of field observations, usually represented as points. Statistical aspects
of sampling methods and approaches are discussed in detail by Schabenberger and Gotway (2005)
and de Gruijter et al (2006), while some more practical suggestions for soil sampling can be found
in Pansu et al (2001) Webster and Oliver (2001), Tan (2005), Legros (2006) and Brus (2019).
Some general recommendations for soil sampling are:

1. Points need to cover the entire geographical area of interest and not overrepresent specific
subareas that have much different characteristics than the main area.

2. Soil observations at point locations should be made using consistent measurement methods.
Replicates should ideally be taken to quantify the measurement error.

3. Bulk sampling is recommended when short-distance spatial variation is expected to be large and
not of interest to the map user.

4. If a variogram is to be estimated then the sample size should be >50 and there should be sufficient
point pairs with small separation distances.

5. If trend coefficients are to be estimated then the covariates at sampling points should cover the
entire feature space of each covariate.

The sampling design or rationale used to decide where to locate soil profile observations, or sam-
pling points, is often not clear and may vary from case to case. Therefore, there is no guarantee
that available legacy point data used as input to geostatistical modelling will satisfy the recom-
mendations listed above. Many of the legacy profile data locations in the world were selected using
convenience sampling. In fact, many points in traditional soil surveys may have been selected and
sampled to capture information about unusual conditions or to locate boundaries at points of
transition and maximum confusion about soil properties (Legros, 2006). Once a soil becomes rec-
ognized as being widely distributed and dominant in the landscape, field surveyors often choose
not to record observations when that soil is encountered, preferring to focus instead on recording
unusual sites or areas where soil transition occurs. Thus the population of available soil point
observations may not be representative of the true population of soils, with some soils being either
over or under-represented.
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Fig. 5.4 Occurrence probabilities derived for the actual sampling locations (left), and for a purely random
sample design with exactly the same number of points (right). Probabilities derived using the ‘spsample.prob‘
function from the GSIF package. The shaded area on the left indicates which areas (in the environmental space)
have been systematically represented, while the white colour indicates areas which have been systematically
omitted (and which is not by chance).

Fig. 5.4 (the Ebergötzen study area) illustrates a problem of dealing with clustered samples and
omission of environmental features. Using the actual samples shown in the plot on the left of
Fig. 5.4 we would like to map the whole area inside the rectangle. This is technically possible,
but the user should be aware that the actual Ebergötzen points systematically miss sampling
some environmental features: in this case natural forests / rolling hills that were not of interest
to the survey project. This does not mean that the Ebergötzen point data are not applicable for
geostatistical analyses. It simply means that the sampling bias and under-representation of specific
environmental conditions will lead to spatial predictions that may be biased and highly uncertain
under these conditions (Brus and Heuvelink, 2007).

5.2.3 Knowledge-driven soil mapping

As mentioned previously in section 1.4.8, knowledge-driven mapping is often based on unstated
and unformalized rules and understanding that exists mainly in the minds and memories of the
individual soil surveyors who conducted field studies and mapping. Expert, or knowledge-based,
information can be converted to mapping algorithms by applying conceptual rules to decision
trees and/or statistical models (MacMillan et al, 2005; Walter et al, 2006; Liu and Zhu, 2009). For
example, a surveyor can define the classification rules subjectively, i.e. based on his/her knowledge
of the area, then iteratively adjust the model until the output maps fit his/her expectation of the
distribution of soils (MacMillan et al, 2010).

In areas where few, or no, field observations of soil properties are available, the most common
way to produce estimates is to rely on expert knowledge, or to base estimates on data from other,
similar areas. This is a kind of ‘knowledge transfer’ system. The best example of a knowledge
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transfer system is the concept of soil series in the USA (Simonson, 1968). Soil series (+phases)
are the lowest (most detailed) level classes of soil types typically mapped. Each soil series should
consist of pedons having soil horizons that are similar in colour, texture, structure, pH, consistence,
mineral and chemical composition, and arrangement in the soil profile.

If one finds the same type of soil series repeatedly at similar locations, then there is little need to
sample the soil again at additional, similar, locations and, consequently, soil survey field costs can
be reduced. This sounds like an attractive approach because one can minimize the survey costs by
focusing on delineating the distribution of soil series only. The problem is that there are >15,000
soil series in the USA (Smith, 1986), which obviously means that it is not easy to recognize the
same soil series just by doing rapid field observations. In addition, the accuracy with which one
can consistently recognize a soil series may well fail on standard kappa statistics tests, indicating
that there may be substantial confusion between soil series (e.g. large measurement error).

Large parts of the world basically contain very few (sparce) field records and hence one will need
to improvise to be able to produce soil predictions. One idea to map such areas is to build attribute
tables for representative soil types, then map the distribution of these soil types in areas without
using local field samples. Mallavan et al (2010) refer to soil classes that can be predicted far
away from the actual sampling locations as homosoils. The homosoils concept is based on the
assumption that locations that share similar environments (e.g. soil-forming factors) are likely to
exhibit similar soils and soil properties also.
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Fig. 5.5 Landform positions and location of a prediction point for the Maungawhau data set.

Expert-based systems also rely on using standard mapping paradigms such as the concept of
relating soil series occurrance to landscape position along a toposequence, or catena . Fig. 5.5, for
example, shows a cross-section derived using the elevation data in Fig. 5.6. An experienced soil
surveyor would visit the area and attempt to produce a diagram showing a sequence of soil types
positioned along this cross-section. This expert knowledge can be subsequently utilized as manual
mapping rules, provided that it is representative of the area, that it can be formalized through
repeatable procedures and that it can be tested using real observations.
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Fig. 5.6 A cross-section for the Maungawhau volcano dataset commonly used in R to illustrate DEM and image
analysis techniques.

If relevant auxiliary information, such as a Digital Elevation Model (DEM), is available for the
study area, one can derive a number of DEM parameters that can help to quantify landforms and
geomorphological processes. Landforms can also automatically be classified by computing various
DEM parameters per pixel, or by using knowledge from, Fig. 5.7 (a sample of the study area) to
objectively extract landforms and associated soils in an area. Such auxiliary landform information
can be informative about the spatial distribution of the soil, which is the key principle of, for
example, the SOTER methodology (Van Engelen and Dijkshoorn, 2012).

The mapping process of knowledge-driven soil mapping can be summarized as follows (MacMillan
et al, 2005, 2010):

1. Sample the study area using transects oriented along topographic cross-sections;

2. Assign soil types to each landform position and at each sample location;

3. Derive DEM parameters and other auxiliary data sets;

4. Develop (fuzzy) rules relating the distribution of soil classes to the auxiliary (mainly topographic)
variables;

5. Implement (fuzzy) rules to allocate soil classes (or compute class probabi;ities) for each grid
location;

6. Generate soil property values for each soil class using representative observations (class centers);

7. Estimate values of the target soil variable at each grid location using a weighted average of
allocated soil class or membership values and central soil property values for each soil class;
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Fig. 5.7 Associated values of DEM-based covariates: TWI — Topographic Wetness Index and Valley depth for
the cross-section from the previous figure.

In mathematical terms, soil property prediction based on fuzzy soil classification values using the
SOLIM approach Zhu et al (2001; Zhu et al, 2010) works as follows:

̂𝑧(𝑠0) =
𝑐𝑝

∑
𝑐𝑗=1

𝜈𝑐𝑗
(𝑠0) ⋅ 𝑧𝑐𝑗

;
𝑐𝑝

∑
𝑐𝑗=1

𝜈𝑗(𝑠0) = 1 (5.10)

where ̂𝑧(𝑠0) is the predicted soil attribute at 𝑠0, 𝜈𝑐𝑗
(𝑠0) is the membership value of class 𝑐𝑗 at

location 𝑠0, and 𝑧𝑐𝑗
is the modal (or best representative) value of the inferred soil attribute of

the 𝑐𝑗-th category. The predicted soil attribute is mapped directly from membership maps using
a linear additive weighing function. Consider the example of six soil classes A, B, C, D, E and F. The
attribute table indicates that soil type A has 10%, B 10%, C 30%, D 40%, E 25%, and F 35% of clay.
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If the membership values at a grid position are 0.6, 0.2, 0.1, 0.05, 0.00 and 0.00, then Eq.(5.10)
predicts the clay content as 13.5%.

It is obvious from this work flow that the critical aspects that determine the accuracy of the
final predictions are the selection of where we locate the cross-sections and the representative
soil profiles and the strength of the relationship between the resulting soil classes and target soil
properties. Qi et al (2006), for example, recommended that the most representative values for
soil classes can be identified, if many soil profiles are available, by finding the sampling location
that occurs at the grid cell with highest similarity value for a particular soil class. Soil mappers
are now increasingly looking for ways to combine expert systems with statistical data mining and
regression modelling techniques.

One problem of using a supervised mapping system, as described above, is that it is difficult to
get an objective estimate of the prediction error (or at least a robust statistical theory for this
has not yet been developed). The only possibility to assess the accuracy of such maps would be to
collect independent validation samples and estimate the mapping accuracy following the methods
described in section 5.3. So, in fact, expert-based systems also depend on statistical sampling and
inference for evaluation of the accuracy of the resulting map.

5.2.4 Geostatistics-driven soil mapping (pedometric mapping)

Pedometric mapping is based on using statistical models to predict soil properties, which leads us to
the field of geostatistics. Geostatistics treats the soil as a realization of a random process (Webster
and Oliver, 2001). It uses the point observations and gridded covariates to predict the random
process at unobserved locations, which yields conditional probability distributions, whose spread
(i.e. standard deviation, width of prediction intervals) explicitly characterizes the uncertainty
associated with the predictions. As mentioned previously in section 1.3.6, geostatistics is a data-
driven approach to soil mapping in which georeferenced point samples are the key input to map
production.

Traditional geostatistics has basically been identified with various ways of variogram modeling and
kriging (Haining et al, 2010). Contemporary geostatistics extends linear models and plain kriging
techniques to non-linear and hybrid models; it also extends purely spatial models (2D) to 3D and
space-time models (Schabenberger and Gotway, 2005; Bivand et al, 2008; Diggle and Ribeiro Jr,
2007; Cressie and Wikle, 2011). Implementation of more sophisticated geostatistical models for
soil mapping is an ongoing activity and is quite challenging (computationally), especially in the
case of fine-resolution mapping of large areas (Hengl et al, 2017a).

Note also that geostatistical mapping is often restricted to quantitative soil properties. Soil pre-
diction models that predict categorical soil variables such as soil type or soil colour class are often
quite complex (see e.g. Hengl et al (2007b) and Kempen et al (2009) for a discussion). Most large
scale soil mapping projects also require predictions in 3D, or at least 2D predictions (layers) for
several depth intervals. This can be done by treating each layer separately in a 2D analysis, pos-
sibly by taking vertical correlations into account, but also by direct 3D geostatistical modelling.
Both approaches are reviewed in the following sections.

Over the last decade statisticians have recommended using model-based geostatistics as the most
reliable framework for spatial predictions. The essence of model-based statistics is that “the sta-
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tistical methods are derived by applying general principles of statistical inference based on an
explicitly declared stochastic model of the data generating mechanism” (Diggle and Ribeiro Jr,
2007; Brown, 2015). This avoids ad hoc, heuristic solution methods and has the advantage that it
yields generic and portable solutions. Some examples of diverse geostatistical models are given in
Brown (2015).

The basic geostatistical model treats the soil property of interest as the sum of a deterministic
trend and a stochastic residual:

𝑍(𝑠) = 𝑚(𝑠) + 𝜀(𝑠) (5.11)

where 𝜀 and hence 𝑍 are normally distributed stochastic processes. This is the same model as
that presented in Eq.(5.1), with in this case 𝜀 = 𝜀′ + 𝜀″ being the sum of the spatially correlated
and spatially uncorrelated stochastic components. The mean of 𝜀 is taken to be zero. Note that
we use capital letter 𝑍 because we use a probabilistic model, i.e. we treat the soil property as an
outcome of a stochastic process and define a model of that stochastic process. Ideally, the spatial
variation of the stochastic residual of Eq.(5.11) is much less than that of the dependent variable.

When the assumption of normality is not realistic, such as when the frequency distribution of
the residuals at observation locations is very skewed, the easiest solution is to take a Transformed
Gaussian approach (Diggle and Ribeiro Jr, 2007, ch3.8) in which the Gaussian geostatistical model
is formulated for a transformation of the dependent variable (e.g. logarithmic, logit, square root,
Box-Cox transform). A more advanced approach would drop the normal distribution approach
entirely and assume a Generalized Linear Geostatistical Model (Diggle and Ribeiro Jr, 2007;
Brown, 2015) but this complicates the statistical analysis and prediction process dramatically.
The Transformed Gaussian approach is nearly as simple as the Gaussian approach although the
back-transformation requires attention, especially when the spatial prediction includes a change
of support (leading to block kriging). If this is the case, it may be necessary to use a stochastic
simulation approach and derive the predictions and associated uncertainty (i.e. the conditional
probability distribution) using numerical simulations.

Model-based geostatistics is based on using an explicitly declared stochastic model of the data
generating mechanism. One basic geostatistical model of soil variation is to treat the soil property
of interest as the sum of a deterministic trend (modelled via some regression function) and a
zero-mean stochastic residual.

The trend part of Eq.(5.11) (i.e. 𝑚) can take many forms. In the simplest case it would be a
constant but usually it is taken as some function of known, exhaustively available covariates. This
is where soil mapping can benefit from other sources of information and can implement Jenny’s
State Factor Model of soil formation (Jenny et al, 1968; Jenny, 1994; Heuvelink and Webster,
2001; McBratney et al, 2011), which has been known from the time of Dokuchaev (Florinsky,
2012). The covariates are often maps of environmental properties that are known to be related to
the soil property of interest (e.g. elevation, land cover, geology) but could also be the outcome of
a mechanistic soil process model (such as a soil acidification model, a soil nutrient leaching model
or a soil genesis model). In the case of the latter one might opt for taking 𝑚 equal to the output of
the deterministic model, but when the covariates are related environmental properties one must
define a structure for 𝑚 and introduce parameters to be estimated from paired observations of the
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soil property and covariates. One of the simplest approaches is to use multiple linear regression to
predict values at some new location 𝑠0 (Kutner et al, 2005):

𝑚(𝑠0) =
𝑝

∑
𝑗=0

𝛽𝑗 ⋅ 𝑋𝑗(𝑠0) (5.12)

where 𝛽𝑗 are the regression model coefficients, 𝛽0 is the intercept, 𝑗 = 1, … , 𝑝 are covariates or
explanatory variables (available at all locations within the study area of interest 𝔸), and 𝑝 is the
number of covariates. Eq.(5.12) can also include categorical covariates (e.g. maps of land cover,
geology, soil type) by representing these by as many binary dummy variables as there are categories
(minus one, to be precise, since an intercept is included in the model). In addition, transformed
covariates may also be included or interactions between covariates. The latter is achieved by
extending the set of covariates with products or other mixtures of covariates. However, note that
this will dramatically increase the number of covariates. The risk of considering a large number of
covariates is that it may become difficult to obtain reliable estimates of the regression coefficients.
Also one may run the risk of multicollinearity — the property of covariates being mutually strongly
correlated (as indicated by Jenny et al (1968) already in (1968)).

The advantage of Eq.(5.12) is that it is linear in the unknown coefficients, which makes their
estimation relatively straightforward and also permits derivation of the uncertainty about the
regression coefficients (𝛽). However, in many practical cases, the linear formulation may be too
restrictive and that is why alternative structures have been extensively developed to establish
the relationship between the dependent and covariates. Examples of these so-called ‘statistical
learning’ and/or ‘machine learning’ approaches are:

• artificial neural networks (Yegnanarayana, 2004),

• classification and regression trees (Breiman, 1993),

• support vector machines (Hearst et al, 1998),

• computer-based expert systems,

• random forests (Breiman, 2001; Meinshausen, 2006),

Statistical treatment of many of these methods is given in Hastie et al (2009) and Kuhn and
Johnson (2013). Care needs to be taken when using machine learning techniques, such as random
forest, because such techniques are more sensitive to noise and blunders in the data.

Most methods listed above require appropriate levels of expertise to avoid pitfalls and incorrect use
but, when feasible and used properly, these methods should extract maximal information about
the target variable from the covariates (Statnikov et al, 2008; Kanevski et al, 2009).

The trend (𝑚) relates covariates to soil properties and for this it uses a soil-environment correlation
model — the so-called CLORPT model, which was formulated by Jenny in 1941 (a (1994) reprint
from that book is also available). McBratney et al (2003) further formulated an extension of the
CLORPT model known as the “SCORPAN” model.

The CLORPT model may be written as (Jenny, 1994; Florinsky, 2012):

𝑆 = 𝑓(𝑐𝑙, 𝑜, 𝑟, 𝑝, 𝑡) (5.13)
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where 𝑆 stands for soil (properties and classes), 𝑐𝑙 for climate, 𝑜 for organisms (including humans),
𝑟 is relief, 𝑝 is parent material or geology and 𝑡 is time. In other words, we can assume that the
distribution of both soil and vegetation (at least in a natural system) can be at least partially
explained by environmental conditions. Eq.(5.13) suggests that soil is a result of environmental
factors, while in reality there are many feedbacks and soil, in turn, influences many of the factors
on the right-hand side of Eq.(5.13), such as 𝑐𝑙, 𝑜 and 𝑟.
Uncertainty about the estimation errors of model coefficients can fairly easily be taken into account
in the subsequent prediction analysis if the model is linear in the coefficients, such as in Eq.(5.12).
In this book we therefore restrict ourselves to this case but allow that the 𝑋𝑗’s in Eq.(5.12) are
derived in various ways.

Since the stochastic residual of Eq.(5.11) is normally distributed and has zero mean, only its
variance-covariance remains to be specified:

𝐶 [𝑍(𝑠), 𝑍(𝑠 + ℎ)] = 𝜎(𝑠) ⋅ 𝜎(𝑠 + ℎ) ⋅ 𝜌(ℎ) (5.14)

where ℎ is the separation distance between two locations. Note that here we assumed that the
correlation function 𝜌 is invariant to geographic translation (i.e., it only depends on the distance
ℎ between locations and not on the locations themselves). If in addition the standard deviation 𝜎
would be spatially invariant then 𝐶 would be second-order stationary. These type of simplifying
assumptions are needed to be able to estimate the variance-covariance structure of 𝐶 from the
observations. If the standard deviation is allowed to vary with location, then it could be defined
in a similar way as in Eq.(5.12). The correlation function 𝜌 would be parameterised to a common
form (e.g. exponential, spherical, Matérn), thus ensuring that the model is statistically valid
and positive-definite. It is also quite common to assume isotropy, meaning that two-dimensional
geographic distance ℎ can be reduced to one-dimensional Euclidean distance ℎ.
Once the model has been defined, its parameters must be estimated from the data. These are
the regression coefficients of the trend (when applicable) and the parameters of the variance-
covariance structure of the stochastic residual. Commonly used estimation methods are least
squares and maximum likelihood. Both methods have been extensively described in the literature
(e.g. Webster and Oliver (2001) and Diggle and Ribeiro Jr (2007)). More complex trend models
may also use the same techniques to estimate their parameters, although they might also need
to rely on more complex parameter estimation methods such as genetic algorithms and simulated
annealing (Lark and Papritz, 2003).

Spatial prediction under the linear Gaussian model with a trend boils down to regression-kriging
when the trend coefficients are determined prior to kriging i.e. to universal kriging or kriging
with external drift when they are estimated together with kriging weights. Both computational
approaches — regression-kriging, kriging with external drift or universal kriging — yield exactly
the same predictions if run using the same inputs and assuming the same (global) geostatistical
model (Hengl et al, 2007a).

The optimal spatial prediction in the case of a model Eq.(5.11) with a linear trend Eq.(5.12) and a
normally distributed residual is given by the well-kown Best Linear Unbiased Predictor (BLUP):

̂𝑧(𝑠0) = 𝑋𝑇
0 ⋅ ̂𝛽 + �̂�𝑇

0 ⋅ (𝑧 − 𝑋 ⋅ ̂𝛽) (5.15)
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where the regression coefficients and kriging weights are estimated using:

̂𝛽 = (𝑋𝑇 ⋅ 𝐶−1 ⋅ 𝑋)−1 ⋅ 𝑋𝑇 ⋅ 𝐶−1 ⋅ 𝑧
�̂�0 = 𝐶−1 ⋅ 𝑐0

and where 𝑋 is the matrix of 𝑝 predictors at the 𝑛 sampling locations, ̂𝛽 is the vector of estimated
regression coefficients, 𝐶 is the 𝑛𝑛 variance-covariance matrix of residuals, 𝑐0 is the vector of 𝑛1
covariances at the prediction location, and 𝜆0 is the vector of 𝑛 kriging weights used to interpolate
the residuals. Derivation of BLUP for spatial data can be found in many standard statistical
books e.g. Stein (1999), Christensen (2001, p.277), Venables and Ripley (2002, p.425–430) and/or
Schabenberger and Gotway (2005).

Any form of kriging computes the conditional distribution of 𝑍(𝑠0) at an unobserved location 𝑠0
from the observations 𝑧(𝑠1), 𝑧(𝑠2), … , 𝑧(𝑠𝑛) and the covariates 𝑋(𝑠0) (matrix of size 𝑝×𝑛). From a
statistical perspective this is straightforward for the case of a linear model and normally distributed
residuals. However, solving large matrices and more sophisticated model fitting algorithms such as
restricted maximum likelihood can take a significant amount of time if the number of observations
is large and/or the prediction grid dense. Pragmatic approaches to addressing constraints imposed
by large data sets are to constrain the observation data set to local neighbourhoods or to take a
multiscale nested approach.

Kriging not only yields optimal predictions but also quantifies the prediction error with the kriging
standard deviation. Prediction intervals can be computed easily because the prediction errors are
normally distributed. Alternatively, uncertainty in spatial predictions can also be quantified with
spatial stochastic simulation. While kriging yields the ‘optimal’ prediction of the soil property at
any one location, spatial stochastic simulation yields a series of possible values by sampling from
the conditional probability distribution. In this way a large number of ‘realizations’ can be gener-
ated, which can be useful when the resulting map needs to be back-transformed or when it is used
in a spatial uncertainty propagation analysis. Spatial stochastic simulation of the linear Gaussian
model can be done using a technique known as sequential Gaussian simulation (Goovaerts, 1997;
Yamamoto, 2008). It is not, in principal, more difficult than kriging but it is certainly numerically
more demanding i.e. takes significantly more time to compute.

5.2.5 Regression-kriging (generic model)

Ignoring the assumptions about the cross-correlation between the trend and residual components,
we can extend the regression-kriging model and use any type of (non-linear) regression to predict
values ( e.g. regression trees, artificial neural networks and other machine learning models), calcu-
late residuals at observation locations, fit a variogram for these residuals, interpolate the residuals
using ordinary or simple kriging, and add the result to the predicted regression part. This means
that RK can, in general, be formulated as:

prediction = trend predicted
using regression + residual predicted

using kriging (5.16)
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Again, statistical inference and prediction is relatively simple if the stochastic residual, or a trans-
formation thereof, may be assumed normally distributed. Error of the regression-kriging model is
likewise a sum of the regression and the kriging model errors.

5.2.6 Spatial Prediction using multiple linear regression

The predictor ̂𝑌 (𝑠0) of 𝑌 (𝑠0) is typically taken as a function of covariates and the 𝑌 (𝑠𝑖) which,
upon substitution of the observations 𝑦(𝑠𝑖), yields a (deterministic) prediction ̂𝑦(𝑠0). In the case of
multiple linear regression (MLR), model assumptions state that at any location in 𝐷 the dependent
variable is the sum of a linear combination of the covariates at that location and a zero-mean
normally distributed residual. Thus, at the 𝑛 observation locations we have:

𝑌 = 𝑋𝑇 ⋅ 𝛽 + 𝜀 (5.17)

where 𝑌 is a vector of the target variable at the 𝑛 observation locations, 𝑋 is an 𝑛 × 𝑝 matrix
of covariates at the same locations and 𝛽 is a vector of 𝑝 regression coefficients. The stochastic
residual 𝜀 is assumed to be independently and identically distributed. The paired observations of
the target variable and covariates (𝑦 and 𝑋) are used to estimate the regression coefficients using,
e.g., Ordinary Least Squares (Kutner et al, 2004):

̂𝛽 = (𝑋𝑇 ⋅ 𝑋)−1 ⋅ 𝑋𝑇 ⋅ 𝑦 (5.18)

once the coefficients are estimated, these can be used to generate a prediction at 𝑠0:

̂𝑦(𝑠0) = 𝑥𝑇
0 ⋅ ̂𝛽 (5.19)

with associated prediction error variance:

𝜎2(𝑠0) = 𝑣𝑎𝑟 [𝜀(𝑠0)] ⋅ [1 + xT
0 ⋅ (XT ⋅ X)−1 ⋅ x0] (5.20)

here, x0 is a vector with covariates at the prediction location and 𝑣𝑎𝑟 [𝜀(𝑠0)] is the variance of the
stochastic residual. The latter is usually estimated by the mean squared error (MSE):

MSE =

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

𝑛 − 𝑝 (5.21)

The prediction error variance given by Eq.(5.20) is smallest at prediction points where the covariate
values are in the center of the covariate (‘feature’) space and increases as predictions are made
further away from the center. They are particularly large in case of extrapolation in feature space
(Kutner et al, 2004). Note that the model defined in Eq.(5.17) is a non-spatial model because
the observation locations and spatial-autocorrelation of the dependent variable are not taken into
account.
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5.2.7 Universal kriging prediction error

In the case of universal kriging, regression-kriging or Kriging with External Drift, the prediction
error is computed as (Christensen, 2001):

�̂�2
UK(𝑠0) = (𝐶0 + 𝐶1) − 𝑐𝑇

0 ⋅ 𝐶−1 ⋅ 𝑐0 + 𝜃0 (5.22)

𝜃0 = (𝑋0 − 𝑋𝑇 ⋅ 𝐶−1 ⋅ 𝑐0)𝑇 ⋅ (𝑋𝑇 ⋅ 𝐶−1 ⋅ 𝑋)−1 ⋅ (𝑋0 − 𝑋𝑇 ⋅ 𝐶−1 ⋅ 𝑐0) (5.23)

where 𝐶0 + 𝐶1 is the sill variation (variogram parameters), 𝐶 is the covariance matrix of the
residuals, and 𝑐0 is the vector of covariances of residuals at the unvisited location.

Ignoring the mixed component of the prediction variance in Eq.(5.23), one can also derive a
simplified regression-kriging variance i.e. as a sum of the kriging variance and the standard error
of estimating the regression mean:

�̂�2
RK(𝑠0) = (𝐶0 + 𝐶1) − 𝑐𝑇

0 ⋅ 𝐶−1 ⋅ 𝑐0 + SEM2 (5.24)

Note that there will always be a small difference between results of Eq.(5.22) and Eq.(5.24),
and this is a major disadvantage of using the general regression-kriging framework for spatial
prediction. Although the predicted mean derived by using regression-kriging or universal kriging
approaches might not differ, the estimate of the prediction variance using Eq.(5.24) will be sub-
optimal as it ignores product component. On the other hand, the advantage of running separate
regression and kriging predictions is often worth the sacrifice as the computing time is an order
of magnitude shorter and we have more flexibility to combine different types of regression models
with kriging when regression is run separately from kriging (Hengl et al, 2007a).

5.2.8 Regression-kriging examples

The type of regression-kriging model explained in the previous section can be implemented here by
combining the regression and geostatistics packages. Consider for example the Meuse case study:

library(gstat)
demo(meuse, echo=FALSE)

We can overlay the points and grids to create the regression matrix by:

meuse.ov <- over(meuse, meuse.grid)
meuse.ov <- cbind(as.data.frame(meuse), meuse.ov)
head(meuse.ov[,c("x","y","dist","soil","om")])
#> x y dist soil om
#> 1 181072 333611 0.0014 1 13.6
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#> 2 181025 333558 0.0122 1 14.0
#> 3 181165 333537 0.1030 1 13.0
#> 4 181298 333484 0.1901 2 8.0
#> 5 181307 333330 0.2771 2 8.7
#> 6 181390 333260 0.3641 2 7.8

which lets us fit a linear model for organic carbon as a function of distance to river and soil type:

m <- lm(log1p(om)~dist+soil, meuse.ov)
summary(m)
#>
#> Call:
#> lm(formula = log1p(om) ~ dist + soil, data = meuse.ov)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.0831 -0.1504 0.0104 0.2098 0.5913
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 2.3421 0.0425 55.05 < 2e-16 ***
#> dist -0.8009 0.1787 -4.48 0.0000147 ***
#> soil2 -0.3358 0.0702 -4.78 0.0000041 ***
#> soil3 0.0366 0.1247 0.29 0.77
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.33 on 149 degrees of freedom
#> (2 observations deleted due to missingness)
#> Multiple R-squared: 0.384, Adjusted R-squared: 0.371
#> F-statistic: 30.9 on 3 and 149 DF, p-value: 1.32e-15

Next, we can derive the regression residuals and fit a variogram:

meuse.s <- meuse[-m$na.action,]
meuse.s$om.res <- resid(m)
vr.fit <- fit.variogram(variogram(om.res~1, meuse.s), vgm(1, "Exp", 300, 1))
vr.fit
#> model psill range
#> 1 Nug 0.048 0
#> 2 Exp 0.065 285

With this, all model parameters (four regression coefficients and three variogram parameters) for
regression-kriging have been estimated and the model can be used to generate predictions. Note
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that the regression model we fitted is significant, and the remaining residuals still show spatial
auto-correlation. The nugget variation is about 1/3rd of the sill variation.
Using the gstat package (Pebesma, 2004; Bivand et al, 2013), regression and kriging can be com-
bined by running universal kriging or kriging with external drift (Hengl et al, 2007a). First, the
variogram of the residuals is calculated:

v.s <- variogram(log1p(om)~dist+soil, meuse.s)
vr.fit <- fit.variogram(v.s, vgm(1, "Exp", 300, 1))
vr.fit
#> model psill range
#> 1 Nug 0.048 0
#> 2 Exp 0.065 285

which gives almost the same model parameter values as the regression-kriging above. Next, the
kriging can be executed with a single call to the generic krige function:

om.rk <- krige(log1p(om)~dist+soil, meuse.s, meuse.grid, vr.fit)
#> [using universal kriging]

The package nlme fits the regression model and the variogram of the residuals concurrently (Pin-
heiro and Bates, 2009):

library(nlme)
m.gls <- gls(log1p(om)~dist+soil, meuse.s, correlation=corExp(nugget=TRUE))
m.gls
#> Generalized least squares fit by REML
#> Model: log1p(om) ~ dist + soil
#> Data: meuse.s
#> Log-restricted-likelihood: -26
#>
#> Coefficients:
#> (Intercept) dist soil2 soil3
#> 2.281 -0.623 -0.244 -0.057
#>
#> Correlation Structure: Exponential spatial correlation
#> Formula: ~1
#> Parameter estimate(s):
#> range nugget
#> 2.00 0.07
#> Degrees of freedom: 153 total; 149 residual
#> Residual standard error: 0.34

In this case, the regression coefficients have been estimated using Eq.(5.16) i.e. via Restricted
maximum likelihood (REML). The advantage of fitting the regression model and spatial auto-
correlation structure concurrently is that both fits are adjusted: the estimation of the regression
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coefficients is adjusted for spatial autocorrelation of the residual and the variogram parameters
are adjusted for the adjusted trend estimate. A disadvantage of using the nlme package is that the
computational intensity increases with the size of the data set, so for any data set >1000 points
the computation time can increase to tens of hours of computing. On the other hand, coefficients
fitted by REML methods might not result in significantly better predictions. Getting the most
objective estimate of the model parameters is sometimes not worth the effort, as demonstrated by
Minasny and McBratney (2007).
Simultaneous estimation of regression coefficients and variogram parameters and including es-
timation errors in regression coefficients into account by using universal kriging / kriging with
external drift is more elegant from a statistical point of view, but there are computational and
other challenges. One of these is that it is difficult to implement global estimation of regression
coefficients with local spatial prediction of residuals, which is a requirement in the case of large
spatial data sets. Also, the approach does not extend to more complex non-linear trend models.
In such cases, we recommend separating trend estimation from kriging of residuals by using the
regression-kriging approach discussed above (Eq.(5.16)).

5.2.9 Regression-kriging examples using the GSIF package

In the GSIF package, most of the steps described above (regression modelling and variogram
modelling) used to fit regression-kriging models are wrapped into generic functions. A regression-
kriging model can be fitted in one step by running:

omm <- fit.gstatModel(meuse, log1p(om)~dist+soil, meuse.grid)
#> Fitting a linear model...
#> Fitting a 2D variogram...
#> Saving an object of class 'gstatModel'...
str(omm, max.level = 2)
#> Formal class 'gstatModel' [package "GSIF"] with 4 slots
#> ..@ regModel :List of 32
#> .. ..- attr(*, "class")= chr [1:2] "glm" "lm"
#> ..@ vgmModel :'data.frame': 2 obs. of 9 variables:
#> .. ..- attr(*, "singular")= logi FALSE
#> .. ..- attr(*, "SSErr")= num 0.00000107
#> .. ..- attr(*, "call")= language gstat::fit.variogram(object = svgm, model = ivgm)
#> ..@ svgmModel:'data.frame': 15 obs. of 6 variables:
#> .. ..- attr(*, "direct")='data.frame': 1 obs. of 2 variables:
#> .. ..- attr(*, "boundaries")= num [1:16] 0 106 213 319 426 ...
#> .. ..- attr(*, "pseudo")= num 0
#> .. ..- attr(*, "what")= chr "semivariance"
#> ..@ sp :Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

the resulting gstatModel class object consists of a (1) regression component, (2) variogram model
for residual, and (3) sample variogram for plotting, (4) spatial locations of observations used to
fit the model. To predict values of organic carbon using this model, we can run:
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om.rk <- predict(omm, meuse.grid)
#> Subsetting observations to fit the prediction domain in 2D...
#> Generating predictions using the trend model (RK method)...
#> [using ordinary kriging]
#>
22% done
100% done
#> Running 5-fold cross validation using 'krige.cv'...
#> Creating an object of class "SpatialPredictions"
om.rk
#> Variable : om
#> Minium value : 1
#> Maximum value : 17
#> Size : 153
#> Total area : 4964800
#> Total area (units) : square-m
#> Resolution (x) : 40
#> Resolution (y) : 40
#> Resolution (units) : m
#> GLM call formula : log1p(om) ~ dist + soil
#> Family : gaussian
#> Link function : identity
#> Vgm model : Exp
#> Nugget (residual) : 0.048
#> Sill (residual) : 0.065
#> Range (residual) : 285
#> RMSE (validation) : 2.4
#> Var explained : 49.4%
#> Effective bytes : 295
#> Compression method : gzip
## back-transformation:
meuse.grid$om.rk <- expm1(om.rk@predicted$om + om.rk@predicted$var1.var/2)
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randomForest−kriging (56%)
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Fig. 5.8 Predictions of organic carbon in percent (top soil) for the Meuse data set derived using regression-
kriging with transformed values, GLM-kriging, regression tress (rpart) and random forest models combined with
kriging. The percentages in brackets indicates amount of variation explained by the models.

We could also have opted for fitting a GLM with a link function, which would look like this:

omm2 <- fit.gstatModel(meuse, om~dist+soil, meuse.grid, family=gaussian(link=log))
#> Fitting a linear model...
#> Fitting a 2D variogram...
#> Saving an object of class 'gstatModel'...
summary(omm2@regModel)
#>
#> Call:
#> glm(formula = om ~ dist + soil, family = fit.family, data = rmatrix)
#>
#> Deviance Residuals:
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#> Min 1Q Median 3Q Max
#> -7.066 -1.492 -0.281 1.635 7.401
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 10.054 0.348 28.88 < 2e-16 ***
#> dist -8.465 1.461 -5.79 4e-08 ***
#> soil2 -2.079 0.575 -3.62 0.00041 ***
#> soil3 0.708 1.021 0.69 0.48913
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for gaussian family taken to be 7.2)
#>
#> Null deviance: 1791.4 on 152 degrees of freedom
#> Residual deviance: 1075.5 on 149 degrees of freedom
#> (2 observations deleted due to missingness)
#> AIC: 742.6
#>
#> Number of Fisher Scoring iterations: 2
om.rk2 <- predict(omm2, meuse.grid)
#> Subsetting observations to fit the prediction domain in 2D...
#> Generating predictions using the trend model (RK method)...
#> [using ordinary kriging]
#>
8% done

100% done
#> Running 5-fold cross validation using 'krige.cv'...
#> Creating an object of class "SpatialPredictions"

or fitting a regression tree:

omm3 <- fit.gstatModel(meuse, log1p(om)~dist+soil, meuse.grid, method="rpart")
#> Fitting a regression tree model...
#> Estimated Complexity Parameter (for prunning): 0.09396
#> Fitting a 2D variogram...
#> Saving an object of class 'gstatModel'...

or a random forest model:

omm4 <- fit.gstatModel(meuse, om~dist+soil, meuse.grid, method="quantregForest")
#> Fitting a Quantile Regression Forest model...
#> Fitting a 2D variogram...
#> Saving an object of class 'gstatModel'...
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All regression-kriging models listed above are valid and the differences between their respective
results are not likely to be large (Fig. 5.8). Regression tree combined with kriging (rpart-kriging)
seems to produce slightly better results i.e. smallest cross-validation error, although the difference
between the four prediction methods is, in fact, not large (±5% of variance explained). It is
important to run such comparisons nevertheless, as they allow us to objectively select the most
efficient method.

 

 

Fig. 5.9 Predictions of the organic carbon (log-transformed values) using random forest vs linear regression-
kriging. The random forest-kriging variance has been derived using the quantregForest package.

Fig. 5.9 shows the RK variance derived for the random forest model using the quantregForest
package (Meinshausen, 2006) and the formula in Eq.(5.24). Note that the quantregForest package
estimates a much larger prediction variance than simple linear RK for large parts of the study
area.
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5.2.10 Regression-kriging and polygon averaging

Although many soil mappers may not realize it, many simpler regression-based techniques can be
viewed as a special case of RK, or its variants. Consider for example a technique commonly used to
generate predictions of soil properties from polygon maps: weighted averaging. Here the principal
covariate available is a polygon map (showing the distribution of mapping units). In this model
it is assumed that the trend is constant within mapping units and that the stochastic residual is
spatially uncorrelated. In that case, the Best Linear Unbiased Predictor of the values is simple
averaging of soil properties per unit (Webster and Oliver, 2001, p.43):

̂𝑧(𝑠0) = ̄𝜇𝑝 = 1
𝑛𝑝

𝑛𝑝

∑
𝑖=1

𝑧(𝑠𝑖) (5.25)

The output map produced by polygon averaging will exhibit abrupt changes at boundaries between
polygon units. The prediction variance of this area-class prediction model is simply the sum of
the within-unit variance and the estimation variance of the unit mean:

�̂�2(𝑠0) = (1 + 1
𝑛𝑝

) ⋅ 𝜎2
𝑝 (5.26)

From Eq.(5.26), it is evident that the accuracy of the prediction under this model depends on the
degree of within-unit variation. The approach is advantageous if the within-unit variation is small
compared to the between-unit variation. The predictions under this model can also be expressed
as:

̂𝑧(𝑠0) =
𝑛

∑
𝑖=1

𝑤𝑖 ⋅ 𝑧(𝑠𝑖); 𝑤𝑖 = { 1/𝑛𝑝 for 𝑠𝑖 ∈ 𝑝
0 otherwise (5.27)

where 𝑝 is the unit identifier. So, in fact, weighted averaging per unit is a special version of
regression-kriging where spatial autocorrelation is ignored (assumed zero) and all covariates are
categorical variables.

Going back to the Meuse data set, we can fit a regression model for organic matter using soil types
as predictors, which gives:

omm <- fit.gstatModel(meuse, log1p(om)~soil-1, meuse.grid)
#> Fitting a linear model...
#> Fitting a 2D variogram...
#> Saving an object of class 'gstatModel'...
summary(omm@regModel)
#>
#> Call:
#> glm(formula = log1p(om) ~ soil - 1, family = fit.family, data = rmatrix)
#>
#> Deviance Residuals:
#> Min 1Q Median 3Q Max
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#> -1.0297 -0.2087 -0.0044 0.2098 0.6668
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> soil1 2.2236 0.0354 62.9 <2e-16 ***
#> soil2 1.7217 0.0525 32.8 <2e-16 ***
#> soil3 1.9293 0.1006 19.2 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for gaussian family taken to be 0.12)
#>
#> Null deviance: 672.901 on 153 degrees of freedom
#> Residual deviance: 18.214 on 150 degrees of freedom
#> (2 observations deleted due to missingness)
#> AIC: 116.6
#>
#> Number of Fisher Scoring iterations: 2

and these regression coefficients for soil classes 1, 2, 3 are equal to the mean values per class:

aggregate(log1p(om) ~ soil, meuse, mean)
#> soil log1p(om)
#> 1 1 2.2
#> 2 2 1.7
#> 3 3 1.9

Note that this equality can be observed only if we remove the intercept from the regression model,
hence we use:

log1p(om) ~ soil-1

and NOT:

log1p(om) ~ soil

The RK model can also be extended to fuzzy memberships, in which case MU values are binary
variables with continuous values in the range 0–1. Hence also the SOLIM model Eq.(5.10) is in
fact just a special version of regression on mapping units:

̂𝑧(𝑠0) =
𝑐𝑝

∑
𝑐𝑗=1

𝜈𝑐𝑗
(𝑠0) ⋅ 𝑧𝑐𝑗

=
𝑝

∑
𝑗=1

MU𝑗 ⋅ ̂𝑏𝑗 for 𝑧𝑐𝑗
= 1

𝑛𝑝

𝑛𝑝

∑
𝑖=1

𝑧(𝑠𝑖) (5.28)

where MU is the mapping unit or soil type, 𝑧𝑐𝑗
is the modal (or most representative) value of

some soil property 𝑧 for the 𝑐𝑗 class, and 𝑛𝑝 is total number of points in some mapping unit MU.
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Ultimately, spatially weighted averaging of values per mapping unit, different types of regression,
and regression kriging are all, in principle, different variants of the same statistical method. The
differences are related to whether only categorical or both categorical and continuous covariates
are used and whether the stochastic residual is spatially correlated or not. Although there are
different ways to implement combined deterministic/stochastic predictions, one should not treat
these nominally equivalent techniques as highly different.

5.2.11 Predictions at point vs block support

The geostatistical model refers to a soil variable that is defined by the type of property and how
it is measured (e.g. soil pH (KCl), soil pH (H2O), clay content, soil organic carbon measured with
spectroscopy), but also to the size and orientation of the soil samples that were taken from the
field. This is important because the spatial variation of the dependent variable strongly depends on
the support size (e.g. due to an averaging out effect, the average organic content of bulked samples
taken from 1 ha plots typically has less spatial variation than that of single soil samples taken from
squares). This implies that observations at different supports cannot be merged without taking
this effect into account (Webster and Oliver, 2001). When making spatial predictions using kriging
one can use block-kriging (Webster and Oliver, 2001) or area-to-point kriging (Kyriakidis, 2004) to
make predictions at larger or smaller supports. Both block-kriging and area-to-point kriging are
implemented in the gstat package via the generic function krige (Pebesma, 2004).

Support can be defined as the integration volume or aggregation level at which an observation
is taken or for which an estimate or prediction is given. Support is often used in the literature
as a synonym for scale — large support can be related to coarse or general scales and vice versa
(Hengl, 2006). The notion of support is important to characterize and relate different scales of
soil variation (Schabenberger and Gotway, 2005). Any research of soil properties is made with
specific support and spatial spacing, the latter being the distance between sampling locations. If
properties are to be used with different support, e.g. when model inputs require a different support
than the support of the observations, scaling (aggregation or disaggregation) becomes necessary
(Heuvelink and Pebesma, 1999).
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Fig. 5.10 Scheme with predictions on point (above) and block support (below). In the case of various versions
of kriging, both point and block predictions smooth the original measurements proportionally to the nugget
variation. After Goovaerts (1997).

Depending on how significant the nugget variation is, prediction variance estimated by a model
can be significantly reduced by increasing the support from points to blocks. The block kriging
variance is smaller than the point kriging variance for an amount approximately equal to the
nugget variation. Even if we take a block size of a few meters this decreases the prediction error
significantly, if indeed the nugget variation occurs within a few meters. Because, by definition,
many kriging-type techniques smooth original sampled values, one can easily notice that for sup-
port sizes smaller than half of the average shortest distance between the sampling locations, both
point and block predictions might lead to practically the same predictions (see some examples by
Goovaerts (1997, p.158), Heuvelink and Pebesma (1999) and/or Hengl (2006)).
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The spatial support is the integration volume or size of the blocks being sampled and/or predicted.
By increasing the support size from point to block support we decrease the prediction error
variance. The decrease in the prediction error variance is approximately equal to the nugget
variance.

Consider, for example, point and block predictions and simulations using the estimates of organic
matter content in the topsoil (in dg/kg) for the Meuse case study. We first generate predictions
and simulations on point support:

omm <- fit.gstatModel(meuse, log1p(om)~dist+soil, meuse.grid)
#> Fitting a linear model...
#> Fitting a 2D variogram...
#> Saving an object of class 'gstatModel'...
om.rk.p <- predict(omm, meuse.grid, block=c(0,0))
#> Subsetting observations to fit the prediction domain in 2D...
#> Generating predictions using the trend model (RK method)...
#> [using ordinary kriging]
#>
100% done
#> Running 5-fold cross validation using 'krige.cv'...
#> Creating an object of class "SpatialPredictions"
om.rksim.p <- predict(omm, meuse.grid, nsim=20, block=c(0,0))
#> Subsetting observations to fit the prediction domain in 2D...
#> Generating 20 conditional simulations using the trend model (RK method)...
#> drawing 20 GLS realisations of beta...
#> [using conditional Gaussian simulation]
#>
100% done
#> Creating an object of class "RasterBrickSimulations"
#> Loading required package: raster
#>
#> Attaching package: 'raster'
#> The following object is masked from 'package:nlme':
#>
#> getData
#> The following objects are masked from 'package:aqp':
#>
#> metadata, metadata<-

where the argument block defines the support size for the predictions (in this case points). To
produce predictions on block support for square blocks of 40 by 40 m we run:

om.rk.b <- predict(omm, meuse.grid, block=c(40,40), nfold=0)
#> Subsetting observations to fit the prediction domain in 2D...
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#> Generating predictions using the trend model (RK method)...
#> [using ordinary kriging]
#>
1% done

100% done
#> Creating an object of class "SpatialPredictions"
om.rksim.b <- predict(omm, meuse.grid, nsim=2, block=c(40,40), debug.level=0)
#> Subsetting observations to fit the prediction domain in 2D...
#> Generating 2 conditional simulations using the trend model (RK method)...
#> Creating an object of class "RasterBrickSimulations"
## computationally intensive

Visual comparison confirms that the point and block kriging prediction maps are quite similar,
while the block kriging variance is much smaller than the point kriging variance (Fig. 5.11).

Even though block kriging variances are smaller than point kriging variances this does not im-
ply that block kriging should always be preferred over point kriging. If the user interest is in
point values rather than block averages, point kriging should be used. Block kriging is also com-
putationally more demanding than point kriging. Note also that it is more difficult (read: more
expensive) to validate block kriging maps. In the case of point predictions, maps can be validated
to some degree using cross-validation, which is inexpensive. For example, via one can estimate
the cross-validation error using the krige.cv function. The gstat package reports automatically the
cross-validation error (Hengl et al, 2013):

om.rk.p
#> Variable : om
#> Minium value : 1
#> Maximum value : 17
#> Size : 153
#> Total area : 4964800
#> Total area (units) : square-m
#> Resolution (x) : 40
#> Resolution (y) : 40
#> Resolution (units) : m
#> GLM call formula : log1p(om) ~ dist + soil
#> Family : gaussian
#> Link function : identity
#> Vgm model : Exp
#> Nugget (residual) : 0.048
#> Sill (residual) : 0.065
#> Range (residual) : 285
#> RMSE (validation) : 2.5
#> Var explained : 47.3%
#> Effective bytes : 313
#> Compression method : gzip
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Fig. 5.11 Predictions and simulations (2) at point (above) and block (below) support using the Meuse dataset.
Note that prediction values produced by point and block methods are quite similar. Simulations on block support
produce smoother maps than the point-support simulations.

which shows that the mapping accuracy at point support is ca. 53% of the original variance (see
further Eq.(5.35)).

Note also that, cross-validation using block support in many cases is not possible because the
input data needed for cross-validation are only available at point support. This basically means
that, for the Meuse example, to estimate the mapping accuracy at block support we would have
to revisit the study area and collect additional (composite) samples on block support that match
the support size of block predictions.

Although prediction at block support is attractive because it leads to more precise predictions,
the amount of variation explained by predictions at block versus point support might not differ
all that much or even at all. Likewise users might not be interested in block averages and may
require point predictions. Geostatistical simulations on block support can also be computationally
intensive and extra field effort is almost certain to be necessary to validate these maps.

One can use point samples to produce both point and block predictions, but it is more difficult to
produce point predictions from block observations. This can be done using area-to-point kriging
(Kyriakidis, 2004), but this technique is computationally intensive, yields large prediction uncer-
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tainties, and is hampered by the fact that it requires the point support variogram which cannot
uniquely be derived from only block observations.

 

 

Fig. 5.12 Correlation plots for predictions and prediction variance: point vs block support.

 

 

Fig. 5.13 Difference in variograms sampled from the simulated maps: point vs block support.
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What confuses non-geostatisticians is that both point and block predictions are normally visualized
using raster GIS models, hence one does not see that the point predictions refer to the centres of
the grid cells (Hengl, 2006). In the case of soil survey, the available soil profile data most typically
refer to point locations (1 × 1 meter or smaller horizontal blocks) because soil samples have small
support. In some cases surveyors mix soil samples from several different profle locations to produce
composite estimates of values. Nevertheless, we can assume that the vast majority of soil profiles
that are collected in the world refer to (lateral) point support. Hence the most typical combination
of support size that we work with is: point support for soil property observations, block support for
covariates and point or block support for soil property predictions. Modelling at full point support
(both soil samples, covariates and outputs at point support) is in fact very rare. Soil covariates
are often derived from remote sensing data, which is almost always delivered at block support.

In principle, there is no problem with using covariates at block support to predict the soil at point
support, except the strength of the relationship between the covariate and target soil property
may be weakened by a mismatch in the support. Ideally, one should always try to collect all input
data at the finest support possible, then aggregate based on the project requirements. This is
unfortunately not always possible, as most inputs are often bulked already and our knowledge
about the short range variation is often very limited.

Figs. 5.12 and 5.13 (correlation plots for Meuse data set) confirms that: (1) predictions on block
and point support show practically no differences and (2) the difference in the prediction error
variance for point and block kriging effectively equals the nugget variance.

The targeted support size for the GlobalSoilMap project, for example, is 3–arcsecond (ca. 100 m)
horizontal dimensions of the SRTM and other covariate data layers used to support prediction
of spatial variation in soil properties. This project probably needs predictions at both point and
block support at the target resolution, and then also provide aggregated values at coarser resolution
blocks (250, 500, 1000 m etc). In any case, understanding consequences of aggregating spatial data
and converting from point to block support is important.

In geostatistics, one needs to consider that any input / output spatial layer refers to some support.
In soil mapping, there are three main support sizes: support size of the soil samples (sampling
support; can refer to point locations or blocks of land), support size of the covariates (often
equivalent to the grid cell size), and support size of predictions (again point locations or blocks of
land).

5.2.12 Geostatistical simulations

In statistical terms, the assessment of the uncertainty of produced maps is equally important as
the prediction of values at all locations. As shown in the previous section, uncertainty of soil
variables can be assessed in several ways. Three aspects, however, appear to be important for any
type of spatial prediction model:

• What are the conditional probability distribution functions (PDFs) of the target variable at each
location?
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• Where does the prediction model exhibit its largest errors?

• What is the accuracy of the spatial predictions for the entire area of interest? And how accurate
is the map overall?

For situations in which PDFs can be estimated ‘reliably’, Heuvelink and Brown (2006) argued
that they confer a number of advantages over non-probabilistic techniques. For example, PDFs
include methods for describing interdependence or correlation between uncertainties, methods for
propagating uncertainties through environmental models and methods for tracing the sources of
uncertainty in environmental data and models (Heuvelink, 1998). By taking a geostatistical ap-
proach, kriging not only yields prediction maps, but also automatically produces PDFs at predic-
tion points and quantifies the spatial correlation in the prediction errors. Geostatistical simulation,
as already introduced in previous sections, refers to a method where realizations are drawn from
the conditional PDF using a pseudo-random number generator. These simulations give a more
realistic image of the spatial correlation structure or spatial pattern of the target variable because,
unlike kriging, they do not smooth out the values.
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Fig. 5.14 20 simulations (at block support) of the soil organic carbon for the Meuse study area (cross-section
from West to East at Y=330348). Bold line indicates the median value and broken lines indicate upper and
lower quantiles (95% probability).

Estimates of the model accuracy are also provided by the geostatistical model, i.e. the kriging
variance. It is useful to note that the variance of a large number of geostatistical simulations will
approximate the kriging variance (and likewise the average of a large number of simulations will
approximate the kriging prediction map).
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Fig. 5.15 Histogram for the target variable (Meuse data set; log of organic matter) based on the actual observa-
tions (left), predictions at all grid nodes (middle) and simulations (right). Note that the histogram for predicted
values will always show somewhat narrower distribution (smoothed), depending on the strength of the model,
while the simulations should be able to reproduce the original range (for more discussion see also: Yamamoto
et al. (2008)).

The differences among an ensemble of realizations produced using geostatistical simulations cap-
ture the uncertainty associated with the prediction map and can be used to communicate uncer-
tainty or used as input in a spatial uncertainty propagation analysis.

Even though the kriging variance and geostatistical simulations are valid and valuable means to
quantify the prediction accuracy, it is important to be aware that these assessments of uncertainty
are model-based, i.e. are only valid under the assumptions made by the geostatistical model. A
truly model-free assessment of the map accuracy can (only) be obtained by probability-based
validation (Brus et al, 2011). For this we need an independent sample i.e. a sample that was not
used to build the model and make the predictions, and that, in addition, was selected from the
study area using a probabilistic sampling design.

For the regression-kriging model fitted for organic carbon of the Meuse data set, we can produce
20 simulations by switching the nsim argument:

om.rksim.p <- predict(omm, meuse.grid, block=c(0,0), nsim=20)
#> Subsetting observations to fit the prediction domain in 2D...
#> Generating 20 conditional simulations using the trend model (RK method)...
#> drawing 20 GLS realisations of beta...
#> [using conditional Gaussian simulation]
#>
100% done
#> Creating an object of class "RasterBrickSimulations"
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log1p(meuse@data[1,"om"])
#> [1] 2.7
extract(raster(om.rk.p@predicted), meuse[1,])
#> [1] 2.7
extract(om.rksim.p@realizations, meuse[1,])
#> sim1 sim2 sim3 sim4 sim5 sim6 sim7 sim8 sim9 sim10 sim11 sim12 sim13
#> [1,] 2.3 2.8 2.8 2.9 2.2 2.4 2.8 2.4 2.4 2 2.3 2.9 2.8
#> sim14 sim15 sim16 sim17 sim18 sim19 sim20
#> [1,] 2.7 2.5 2.9 2.7 2.8 2.4 2.5

which shows the difference between sampled value (2.681022), predicted value (2.677931) and
simulated values for about the same location i.e. a PDF (see also histograms in Fig. 5.15). If we
average the 20 simulations we obtain an alternative estimate of the mean:

mean(extract(om.rksim.p@realizations, meuse[1,]))
#> [1] 2.6

In this case there remains a small difference between the two results, which is probably due to the
small number of simulations (20) used.

5.2.13 Automated mapping

Applications of geostatistics today suggest that we will be increasingly using automated mapping
algorithms for mapping environmental variables. The authors of the intamap1 package for R, for
example, have produced a wrapper function interpolate that automatically generates predictions
for any given combiination of input observations and prediction locations (Pebesma et al, 2011).
Consider the following example for predicting organic matter content using the Meuse case study:

library(intamap)
#>
#> Attaching package: 'intamap'
#> The following object is masked from 'package:raster':
#>
#> interpolate
demo(meuse, echo=FALSE)
meuse$value = meuse$zinc
output <- interpolate(meuse, meuse.grid, list(mean=TRUE, variance=TRUE))
#> R 2019-03-17 16:41:33 interpolating 155 observations, 3103 prediction locations
#> Warning in predictTime(nObs = dim(observations)[1], nPred = nPred, formulaString = formulaString, :
#> using standard model for estimating time. For better

1 https://cran.r-project.org/package=intamap

https://cran.r-project.org/package=intamap
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#> platform spesific predictions, please run
#> timeModels <- generateTimeModels()
#> and save the workspace
#> [1] "estimated time for copula 159.72396788006"
#> Checking object ... OK

which gives the (presumably) best interpolation method for the problem at hand (value column),
given the time available set with maximumTime (Pebesma et al, 2011):

str(output, max.level = 2)
#> List of 16
#> $ observations :Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
#> $ formulaString :Class 'formula' language value ~ 1
#> .. ..- attr(*, ".Environment")=<environment: 0x140178c0>
#> $ predictionLocations:Formal class 'SpatialPixelsDataFrame' [package "sp"] with 7 slots
#> $ params :List of 18
#> ..$ doAnisotropy : logi TRUE
#> ..$ testMean : logi FALSE
#> ..$ removeBias : logi NA
#> ..$ addBias : logi NA
#> ..$ biasRemovalMethod: chr "LM"
#> ..$ nmax : num 50
#> ..$ nmin : num 0
#> ..$ omax : num 0
#> ..$ maxdist : num Inf
#> ..$ ngrid : num 100
#> ..$ nsim : num 100
#> ..$ sMin : num 4
#> ..$ block : num(0)
#> ..$ processType : chr "gaussian"
#> ..$ confProj : logi TRUE
#> ..$ debug.level : num 0
#> ..$ nclus : num 1
#> ..$ significant : logi TRUE
#> ..- attr(*, "class")= chr "IntamapParams"
#> $ outputWhat :List of 2
#> ..$ mean : logi TRUE
#> ..$ variance: logi TRUE
#> $ blockWhat : chr "none"
#> $ intCRS : chr "+init=epsg:28992 +proj=sterea +lat_0=52.15616055555555 +lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=46"| __truncated__
#> $ lambda : num -0.27
#> $ anisPar :List of 4
#> ..$ ratio : num 1.48
#> ..$ direction : num 56.1
#> ..$ Q : num [1, 1:3] 3.05e-07 2.29e-07 -9.28e-08
#> .. ..- attr(*, "dimnames")=List of 2
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#> ..$ doRotation: logi TRUE
#> $ variogramModel :Classes 'variogramModel' and 'data.frame': 2 obs. of 9 variables:
#> ..$ model: Factor w/ 20 levels "Nug","Exp","Sph",..: 1 3
#> ..$ psill: num [1:2] 0.00141 0.02527
#> ..$ range: num [1:2] 0 1282
#> ..$ kappa: num [1:2] 0 0
#> ..$ ang1 : num [1:2] 0 33.9
#> ..$ ang2 : num [1:2] 0 0
#> ..$ ang3 : num [1:2] 0 0
#> ..$ anis1: num [1:2] 1 0.674
#> ..$ anis2: num [1:2] 1 1
#> ..- attr(*, "singular")= logi FALSE
#> ..- attr(*, "SSErr")= num 2.84e-08
#> ..- attr(*, "call")= language fit.variogram(object = experimental_variogram, model = vgm(psill = psill, model = model, range = range, nugg| __truncated__ ...
#> $ sampleVariogram :Classes 'gstatVariogram' and 'data.frame': 11 obs. of 6 variables:
#> ..$ np : num [1:11] 7 31 94 132 147 ...
#> ..$ dist : num [1:11] 67.2 94.2 142.9 193.5 248.9 ...
#> ..$ gamma : num [1:11] 0.000891 0.005635 0.005537 0.006056 0.010289 ...
#> ..$ dir.hor: num [1:11] 0 0 0 0 0 0 0 0 0 0 ...
#> ..$ dir.ver: num [1:11] 0 0 0 0 0 0 0 0 0 0 ...
#> ..$ id : Factor w/ 1 level "var1": 1 1 1 1 1 1 1 1 1 1 ...
#> ..- attr(*, "direct")='data.frame': 1 obs. of 2 variables:
#> ..- attr(*, "boundaries")= num [1:12] 36.8 73.5 110.3 165.5 220.6 ...
#> ..- attr(*, "pseudo")= num 0
#> ..- attr(*, "what")= chr "semivariance"
#> $ methodParameters : chr " vmodel = data.frame(matrix(0,nrow = 2 ,ncol = 9 ))\nnames(vmodel) = c(\"model\",\"psill\",\"range\",\"kappa"| __truncated__
#> $ predictions :Formal class 'SpatialPixelsDataFrame' [package "sp"] with 7 slots
#> $ outputTable : num [1:4, 1:3103] 181180 333740 842 44785 181140 ...
#> ..- attr(*, "dimnames")=List of 2
#> ..- attr(*, "transposed")= logi TRUE
#> $ processPlot : chr ""
#> $ processDescription : chr "Spatial prediction using the method transGaussian"
#> - attr(*, "class")= chr "transGaussian"

The interpolate function automatically chooses between: (1) kriging, (2) copula methods, (3)
inverse distance interpolation, projected spatial gaussian process methods in the gstat package,
(4) transGaussian kriging or Yamamoto interpolation.

Automated mapping is the computer-aided generation of (meaningful) maps from measurements.
In the context of geostatistical mapping, automated mapping implies that the model fitting, pre-
diction and visualization can be run with little or no human interaction / intervention.

The same idea of automated model fitting and prediction has been implemented in the GSIF
package. Some examples of automated soil mapping have been already shown previously.
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Fig. 5.16 A modern workflow of predictive soil mapping. This often includes state-of-the-art Machine Learning
Algorithms. Image source: Hengl et al. (2017) doi: 10.1371/journal.pone.0169748.

Automated mapping, as long as it is not a black-box system, is beneficial for soil mapping appli-
cations for several reasons: (1) it saves time and effort needed to get initial results, (2) it allows
generation of maps using current data (live geostatistics) even via a web-interfaces, (3) it greatly
reduces the workload in cases where maps need to be produced repeatedly, such as when regular
updates are needed or the same model is applied in different subareas. In practice, automated
mapping is typically a three-stage process (Fig. 5.16):

1. Rapidly generate predictions and a report of analysis (analyze why a particular technique was
chosen and how well it performs? Are there any outliers or artifacts? Which predictors are most
significant? etc).

2. Review the results of spatial prediction and fine-tune some parameters and if necessary filter
and/or adjust the input maps.

3. Re-run the prediction process and publish the final maps.

hence geostatisticians are still an essential and active part of the process. In automated mapping
they primarily focus their expertise on doing interpretation of the results rather than on manually
analyzing the data.
It is unlikely that a simple linear prediction model can be used to fit every type of soil data. It
is more likely that some customized models, i.e. models specific for each property, would perform
better than if a single model were used for a diversity of soil properties. This is because different soil
properties have different distributions, they vary differently at different scales, and are controlled
by different processes. On the other hand, the preferred way to ensure that a single model can be
used to map a variety of soil properties is to develop a generic framework with multi-thematic,
multi-scale predictors that allows for iterative search for optimal model structure and parameters,
and then implement this model via an automated mapping system.
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5.2.14 Selecting spatial prediction models

The purpose of spatial prediction is to (a) produce a map showing spatial distribution of the vari-
able of interest for the area of interest, and (b) to do this in an unbiased way. A comprehensive
path to evaluating spatial predictions is the caret2 approach (Kuhn and Johnson, 2013), which
wraps up many of the standard processes such as model training and validation, method compar-
ison and visualization. Consider, for example, organic matter % in the topsoil in the meuse data
set:

library(caret); library(rgdal)
#> Loading required package: lattice
#> Loading required package: ggplot2
#>
#> Attaching package: 'caret'
#> The following object is masked from 'package:intamap':
#>
#> preProcess
demo(meuse, echo=FALSE)
meuse.ov <- cbind(over(meuse, meuse.grid), meuse@data)
meuse.ov$x0 = 1

We can quickly compare performance of using GLM vs random forest vs no model for predicting
organic matter (om) by using the caret package functionality:

fitControl <- trainControl(method="repeatedcv", number=2, repeats=2)
mFit0 <- caret::train(om~x0, data=meuse.ov, method="glm",

family=gaussian(link=log), trControl=fitControl,
na.action=na.omit)

mFit1 <- caret::train(om~soil, data=meuse.ov, method="glm",
family=gaussian(link=log), trControl=fitControl,
na.action=na.omit)

mFit2 <- caret::train(om~dist+soil+ffreq, data=meuse.ov, method="glm",
family=gaussian(link=log), trControl=fitControl,
na.action=na.omit)

mFit3 <- caret::train(om~dist+soil+ffreq, data=meuse.ov, method="ranger",
trControl=fitControl, na.action=na.omit)

This will run repeated Cross-validation with 50% : 50% splits training and validation, which means
that, in each iteration, models will be refitted from scratch. Next we can compare performance of
the three models by using:

2 http://topepo.github.io/caret/index.html

http://topepo.github.io/caret/index.html
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resamps <- resamples(list(Mean=mFit0, Soilmap=mFit1, GLM=mFit2, RF=mFit3))
bwplot(resamps, layout = c(2, 1), metric=c("RMSE","Rsquared"),

fill="grey", scales = list(relation = "free", cex = .7),
cex.main = .7, cex.axis = .7)
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Fig. 5.17 Comparison of spatial prediction accuracy (RMSE at cross-validation points) for simple averaging
(Mean), GLM with only soil map as covariate (Soilmap), GLM and random forest (RF) models with all possible
covariates. Error bars indicate range of RMSE values for repeated CV.

In the case above, it seems that random forest (ranger package3) helps reduce mean RMSE of
predicting organic matter by about 32%:

round((1-min(mFit3$results$RMSE)/min(mFit0$results$RMSE))*100)
#> [1] 32

There is certainly added value in using spatial covariates (in the case above: distance to water and
flooding frequency maps) and in using machine learning for spatial prediction, even with smaller
data sets.

Note also that the assessment of spatial prediction accuracy for the three models based on the train
function above is model-free, i.e. cross-validation of the models is independent of the models used
because, at each cross-validation subset, fitting of the model is repeated and validation points are
maintained separate from model training. Subsetting point samples is not always trivial however:
3 https://github.com/imbs-hl/ranger

https://github.com/imbs-hl/ranger
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in order to consider cross-validation as completely reliable, the samples ought to be representative
of the study area and preferably collected using objective sampling such as simple random sampling
or similar (Brus et al, 2011; Brus, 2019). In cases where the sampling locations are clustered in
geographical space i.e. if some parts of the study area are completely omitted from sampling,
then also the results of cross-validation will reflect that sampling bias / poor representation. In all
the following examples we will assume that cross-validation gives a reliable measure of mapping
accuracy and we will use it as the basis of accuracy assessment i.e. mapping efficiency. In reality,
cross-validation might be tricky to implement and could often lead to somewhat over-optimistic
results if either sampling bias exists or/and if there are too few points for model validation. For
example, in the case of soil profile data, it is highly recommended that entire profiles are removed
from CV because soil horizons are too strongly correlated (as discussed in detail in Gasch et al
(2015) and Brenning (2012)).

The whole process of spatial prediction of soil properties could be summarized in 5 steps:

1. Initial model comparison (comparison of prediction accuracy and computing time).
2. Selection of applicable model(s) and estimation of model parameters i.e. model fitting.
3. Predictions i.e. generation of maps for all areas of interest.
4. Objective accuracy assessment using independent (cross-)validation.
5. Export and sharing of maps and summary documentation explaining all processing steps.

Studying the caret package tutorial4 and/or the mlr tutorials5 is highly recommended for anyone
looking for a systematic introduction to predictive modelling.

5.2.15 3D regression-kriging

Measurements of soil properties at point support can be thought of as describing explicit 3D
locations (easting, northing and depth), and are amenable to being dealt with using 3D geostatis-
tics (e.g. 3D kriging). Application of 3D kriging to soil measurements is cumbersome for several
reasons:

1. The differences between sampling intervals and spatial correlation in the horizontal and vertical
dimensions are very large (<10 in the vertical v.s. 100’s to 1000’s of in the horizontal). The
resulting strong anisotropy must be accounted for when the geostatisitcal model is derived.
Estimation of the anisotropy may be hampered by the relatively small number of observations
along the vertical profile, although under a stationarity assumption it can benefit from the
many repetitions of profile data for all profile locations.

2. Soil property values refer to vertical block support (usually because they are composite samples,
i.e. the average over a soil horizon), hence some of the local variation (in the vertical dimension)
has been smoothed out.

3. Soil surveyors systematically under-represent lower depths — surveyors tend to systematically
take fewer samples as they assume that deeper horizons are of less importance for management

4 http://topepo.github.io/caret/index.html
5 https://mlr-org.github.io

http://topepo.github.io/caret/index.html
https://mlr-org.github.io
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or because deeper horizons are more expensive to collect or because deeper horizons are assumed
to be more homogeneous and uniform.

4. Many soil properties show clear trends in the vertical dimension and, if this is ignored, the
result can be a very poor geostatistical model. It may not be that easy to incorporate a vertical
trend because such a trend is generally not consistently similar between different soil types.
On the other hand, soil variables are auto-correlated in both horizontal and vertical (depth)
dimensions, so that it makes sense to treat them using 3D geostatistics whenever we have
enough 3D soil observations.

Because soil variables are auto-correlated in both horizontal and vertical (depth) dimensions it
makes sense to treat them using 3D geostatistics, as long as there are enough measurements in all
spatial dimensions.

 

 

Fig. 5.18 Spatial 3D prediction locations in a gridded system (voxels). In soil mapping, we often predict for
larger blocks of land e.g. 100 to 1000 m, but then for vertical depths of few tens of centimeters, so the output
voxels might appear in reality as being somewhat disproportional.

The fact that there are almost always <10 soil observations over the total depth of a soil profile,
so that the estimates of the range in the vertical dimension will be relatively poor, is something
that cannot be improved. The fact that soil samples taken by horizon refer to block support is a
more serious problem, as part of short range variation has been lost, plus we know that the point
values do not refer to the horizon center but to the whole horizon block, which, in addition to
everything else, tend to be irregular i.e. do not have constant depth and width.

To predict in 3D space, we extend the regression model from Eq.(5.11) with a soil depth function:

̂𝑧(𝑠0, 𝑑0) =
𝑝

∑
𝑗=0

̂𝛽𝑗 ⋅ 𝑋𝑗(𝑠0, 𝑑0) + ̂𝑔(𝑑0) +
𝑛

∑
𝑖=1

�̂�𝑖(𝑠0, 𝑑0) ⋅ 𝑒(𝑠𝑖, 𝑑𝑖) (5.29)

where 𝑑 is the 3rd depth dimension expressed in meters from the land surface, ̂𝑔(𝑑0) is the predicted
soil depth function, typically modelled by a spline function. This allows prediction of soil properties
at any depth using observations at other depths but does require 3D modelling of the covariance
structure, which is not easy because there may be zonal and geometric anisotropies (i.e. the
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variance and correlation lengths may differ between vertical and horizontal directions). Also, the
vertical support of observations becomes important and it should be realized that observations
are the averages over depth intervals and not values at points along the vertical axis (Fig. 5.18).
Spline functions have been proposed and used as mass-preserving curve fitting methods to derive
point and block values along the vertical axis from observations at given depth intervals, but the
difficulty is that these yield estimates (with uncertainties) that should not be confused with real
observations.

A 3D variogram, e.g. modelled using an exponential model with three standard parameters (nugget
𝑐0, partial sill 𝑐1, range parameter 𝑟):

𝛾 (ℎ) = { 0 if ℎ = 0
𝑐0 + 𝑐1 ⋅ [1 − 𝑒−( ℎ

𝑟 )] if ℎ > 0 ℎ = [ℎ𝑥, ℎ𝑦, ℎ𝑑] (5.30)

where the scalar ‘distance’ ℎ is calculated by scaling horizontal and vertical separation distances
using three anisotropy parameters:

ℎ =
√√
⎷

(ℎ𝑥
𝑎𝑥

)
2

+ (ℎ𝑦
𝑎𝑦

)
2

+ (ℎ𝑑
𝑎𝑑

)
2

(5.31)

Typically, in the case of soil data, the anisotropy ratio between horizontal and vertical distances
is high — spatial variation observed in a few depth changes may correspond with several or
more in horizontal space, so that the initial settings of the anisotropy ratio (i.e. the ratio of the
horizontal and vertical variogram ranges) are between 3000–8000, for example. Variogram fitting
criteria can then be used to optimize the anisotropy parameters. In our case we assumed no
horizontal anisotropy and hence assumed 𝑎𝑥 = 𝑎𝑦 = 1, leaving only 𝑎𝑑 to be estimated. Once
the anisotropy ratio is obtained, 3D variogram modelling does not meaningfully differ from 2D
variogram modelling.

The 3D RK framework explained above can be compared to the approach of Malone et al (2009),
who first fit an equal-area spline function to estimate the soil properties at standard depths, and
next fit regression and variogram models at each depth. A drawback of the approach by Malone
et al (2009), however, is that the separate models for each depth ignore all vertical correlations. In
addition, the equal-area spline is not used to model soil-depth relationships but only to estimate
the values at standard depths for sampling locations i.e. it is implemented for each soil profile
(site) separately. In the 3D RK framework explained above, a single model is used to generate
predictions at any location and for any depth, and this takes into account both horizontal and
vertical relationships simultaneously. The 3D RK approach is both easier to implement, and allows
for incorporating all (vertical) soil-depth relationships including the spatial correlations.

5.2.16 Predicting with multiscale and multisource data

Fig. 5.3 indicates that spatial prediction is a linear processes with one line of inputs and one
line of outputs. In some cases soil mappers have to use methods that can work with multi-scale
and/or multi-source data i.e. data with different extents, resolution and uncertainty. Here by
multiscale data we imply covariates used for geostatistical mapping that are available at two or
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more (distinctly different) resolutions, but that cover the same area of interest (see also: RasterStack
class in the raster package). In the case of the multisource data, covariates can be of any scale, they
can have a variable extent, and variable accuracy (Fig. 5.19b). In other words, when referring to
multiscale data, we assume that the input covariate layers differ only in their resolution; whereas
in referring to multisource data, we consider that all technical aspects of the input data could
potentially be different.

Organizing (and using) multiscale and multisource data is something that probably can not be
avoided in global soil mapping projects. From the GIS perspective, and assuming a democratic
right to independently develop and apply spatial prediction models, merging of the multiscale and
multisource data is likely to be inevitable.

 

 

Fig. 5.19 A general scheme for generating spatial predictions using multiscale and multisource data.

As a general strategy, for multi-scale data, a statistically robust approach is to fit a single model
to combined covariates downscaled or upscaled to a single, common resolution (Fig. 5.19a). For
the multi-source data data assimilation methods i.e. merging of predictions (Fig. 5.19b) can be
used (Caubet et al, 2019). Imagine if we have covariate layers for one whole continent at some
coarse resolution of e.g. 500 m, but for some specific country have other predictions at a finer
resolution of e.g. 100 m. Obviously any model we develop that uses both sources of data is limited
in its application to just the extent of that country. To ensure that all covariate and soil data
available for that country are used to generate predictions, we can fit two models at seperate
scales and independently of each other, and then merge the predictions only for the extent of the
country of interest. A statistical framework for merging such predictions is given, for example, in
Caubet et al (2019). In that sense, methods for multisource data merging are more attractive for
pan-continental and global projects, because for most of the countries in the world, both soil and
covariate data are available at different effective scales.

A sensible approach to merging multiple predictions (usually at multiple resolutions) is to derive a
weighted average of two or more predictions / use the per-pixel accuracy to assign relative weights,
so that more accurate predictions receive more weight (Heuvelink and Bierkens, 1992).
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It is important to emphasize, however, that, in order to combine various predictors, we do need
to have an estimate of the prediction uncertainty e.g. derived using cross-validation, otherwise
we are not able to assign the weights. In principle, a linear combination of statistical techniques
using the equation above should be avoided if a theoretical basis exists that incorporates such a
combination.

Combined predictions are especially interesting for situations where:

• predictions are produced using different inputs i.e. data with different coverage,

• there are several prediction methods which are equally applicable,

• where no theory exists that describes a combination of spatial prediction methods,

• where fitting and prediction of individual models is faster and less problematic than fitting of
a hybrid model.

Estimation of the prediction variance and confidence interval of combined or merged predictions
is more complex than estimation of the mean value.

5.3 Accuracy assessment and the mapping efficiency

5.3.1 Mapping accuracy and numeric resolution

Every time a digital soil mapper produces soil maps, soil GIS and soil geographical databases those
products can be evaluated using independent validation studies. Unfortunately, much evaluation
of soil maps in the world is still done using subjective ‘look-good’ assessments and the inherent
uncertainty of the product is often underreported. In this book, we promote objective assessment
of mapping accuracy, i.e. based on statistical testing using ground truth data.

Mapping accuracy can be defined as the difference between an estimated value and the “true” value,
i.e. a value of the same target variable arrived at using a significantly more accurate method. In the
most simple terms, accuracy is the error component of the perfectly accurate map (Mowrer and
Congalton, 2000). Although we know that soils form under systematic environmental conditions
and probably much of the variation is deterministic (Eq.(5.1)), we do not yet have tools that allow
us to model soil formation and evolution processes perfectly (see also section 1.6.2). The best we
can do is to calibrate some spatial prediction model using field records, and then generate (the
best possible) predictions. The resulting soil property map, i.e. what we know about soils, is then
a sum of two signals:

𝑧map(𝑠) = 𝑍(𝑠) + 𝜀(𝑠) (5.32)

where 𝑍(𝑠) is the true variation, and 𝜀(𝑠) is the error component i.e. what we do not know. The
error component, also known as the error budget, consists of two parts: (1) the unexplained part
of soil variation, and (2) the pure noise (sampling and measurement errors described in section
1.6.2).
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The unexplained part of soil variation is the variation we somehow failed to explain because we
are not using all relevant covariates and/or due to the limited sampling intensity. For example,
the sampling plan might fail to sample some hot-spots or other important local features. The
unexplained part of variation also includes short-range variation, which is possibly deterministic
but often not of interest or is simply not feasible to describe at common mapping scales.

The way to determine the error part in Eq.(5.32) is to collect additional samples and then de-
termine the average error or the Root Mean Square Error (Goovaerts, 2001; Finke, 2006; Li and
Heap, 2010):

RMSE =
√√√
⎷

1
𝑙 ⋅

𝑙
∑
𝑖=1

[ ̂𝑧(𝑠𝑖) − 𝑧(𝑠𝑖)]
2 (5.33)

where 𝑙 is the number of validation points, and the expected estimate of prediction error at
sampling locations is equal to the nugget variation (𝐸{RMSE} = 𝜎(ℎ = 0)). In addition to RMSE,
it is often interesting to see also whether the errors are, on average, positive (over-estimation) or
negative (under-estimation) i.e. whether there is possibly any clear bias in our predictions:

ME = 1
𝑚

𝑚
∑
𝑗=1

( ̂𝑦(𝑠𝑗) − 𝑦(𝑠𝑗)) (5.34)

To see how much of the global variation budget has been explained by the model we can use:

Σ% = [1 − SSE
SSTO] = [1 − RMSE2

𝜎2𝑧
] [0 − 100%] (5.35)

where SSE is the sum of squares for residuals at cross-validation points (i.e. MSE ⋅ 𝑛), and SSTO
is the total sum of squares. Σ% is a global estimate of the map accuracy, valid only under the
assumption that the validation points are spatially independent from the calibration points, rep-
resentative and large enough (e.g. 𝑙 > 50), and that the error component is normally distributed
around the zero value (𝐸 { ̂𝑧(𝑠𝑖) − 𝑧(𝑠𝑖)} = 0).
Once we have estimated RMSE, we can also determine the effective numeric resolution for the
predictions (Hengl et al, 2013). For example, assuming that the original sampling variance is 1.85
and that RMSE=1 (i.e. Σ%=47%), the effective numeric resolution for predictions is then 0.5
(as shown previously in Fig. 1.16). There is probably no need to code the values with a better
precision than 0.5 units.

5.3.2 Accuracy assessment methods

There are three possibilities for estimating the RMSE (Fig. 5.20):

1. Run cross-validation using the same input data used for model fitting.

2. Collect new samples using a correct probability sampling design to ensure an unbiased estimate
of accuracy.
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3. Compare predicted values with more detailed maps for small study areas produced at much higher
accuracy, usually also at much finer level of detail.
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Fig. 5.20 General types of validation procedures for evaluating accuracy of spatial prediction models.

Although the prediction variance already indicates what the potential accuracy of the maps is,
only by independent validation can we determine the true accuracy of the maps. Brus et al (2011)
further show that, actually, only if the validation points are selected using some probability-based
sampling, like simple random sampling or stratified sampling, can one determine the true accuracy
of any produced gridded maps. In practice, we can rarely afford to collect new samples, so that
cross-validation is often the only viable option.

5.3.3 Cross-validation and its limitations

Because collecting additional (independent) samples is often impractical and expensive, validation
of prediction models is commonly done by using cross-validation i.e. by subsetting the original
point set into two data sets — calibration and validation — and then repeating the analysis. There
are several types of cross-validation methods (Bivand et al, 2008, pp.221–226):

• the 𝑘–fold cross-validation — the original sample is split into 𝑘 equal parts and then each is
used for cross-validation;

• leave-one-out cross-validation (LOO) — each sampling point is used for cross-validation;

• Jackknifing — similar to LOO, but aims at estimating the bias of statistical analysis and not
of predictions;
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Fig. 5.21 Left: confidence limits for the amount of variation explained (0–100%) for two spatial prediction
methods: inverse distance interpolation (IDW) and regression-kriging (RK) for mapping organic carbon content
(Meuse data set). Right: the average amount of variation explained for two realizations (5-fold cross-validation)
as a function of the number of cross-validation runs (repetitions). In this case, the RK method is distinctly
better than method IDW, but the cross-validation score seems to stabilize only after 10 runs.

Cross-validation is a cost-efficient way to get an objective estimate of the mapping accuracy. Under
an assumption that the input samples are representative of the study area (ideally collected using
objective / probability sampling to avoid any kind of bias).

Both 𝑘–fold and the leave-one-out cross validation are implemented in the e.g. gstat package
(krige.cv methods), which makes this type of assessment convenient to implement. Note also that
cross-validation is not necessarily independent — points used for cross-validation are a subset of
the original sampling design, hence if the original design is biased and/or non-representative, then
also the cross-validation might not reveal the true accuracy of a technique. However, if the sampling
design has been generated using some unbiased design based sampling (e.g. random sampling),
randomly seleced subsets will provide unbiased estimators of the true mapping accuracy.

“Models can only be evaluated in relative terms, and their predictive value is always open to
question. The primary value of models is heuristic.” (Oreskes et al, 1994) Hence, also in soil
mapping, accuracy assessment should only be considered in relative terms. Each evaluation of soil
mapping accuracy might give somewhat different numbers, so it is often a good idea to repeat
the evaluation multiple times. Likewise, cross-validation requires enough repetition (e.g. at least
3) otherwise over-positive or over-negative results can be produced by chance (Fig. 5.21). Many
geostatisticians (see e.g. krige.cv function described in Bivand et al (2008, pp.222–223)) suggest
that at least 5 repetitions are needed to produce ‘stable’ measures of the mapping accuracy. If
only one realization of cross-validation is used, this can accidentally lead to over-optimistic or
over-pessimistic estimates of the true mapping accuracy.
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5.3.4 Accuracy of the predicted model uncertainty

Recall from Eq.(5.8) that the output of the prediction process is typically (1) predicted mean value
at some location ( ̂𝑍(𝑠0)), and (2) predicted prediction variance i.e. regression-kriging error (�̂�(𝑠0)).
In the previous section we have shown some common accuracy measures for the prediction of the
mean value. It might sound confusing but, in geostatistics, one can also validate the uncertainty
of uncertainty i.e. derive the error of the estimation error. In the case of the Meuse data set:

om.rk.cv <- krige.cv(log1p(om)~dist+soil, meuse.s, vr.fit)
hist(om.rk.cv$zscore, main = "Z-scores histogram",

xlab = "z-score value", col = "grey", breaks = 25,
cex.axis = .7, cex.main = .7, cex.lab = .7)
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Fig. 5.22 Z-scores for the cross-validation of the soil organic carbon model.

Here, the cross-validation function krige.cv reports errors at validation points (5–fold cross-
validation by default), but it also compares the difference between the regression-kriging error
estimated by the model and the actual error. The ratio between the actual and expected error is
referred to as the 𝑧-scores (Bivand et al, 2008, p.225):

𝜎𝑟(𝑠𝑗) = ̂𝑧(𝑠𝑗) − 𝑧∗(𝑠𝑗)
�̂�(𝑠𝑗)

; 𝐸{𝑣𝑎𝑟(𝜎𝑟)} = 1 (5.36)



214 5 Statistical theory for predictive soil mapping

Ideally, the mean value of 𝑧-scores should be around 0 and the variance of the 𝑧-scores should
be around 1. If the 𝑧-score variance is substantially smaller than 1, then the model overestimates
the actual prediction uncertainty. If the 𝑧-score variance is substantially greater than 1, then
the model underestimates the prediction uncertainty. The difference between the actual and pre-
dicted model error can be also referred to as the model reliability. A model can be accurate but
then ‘overpessimistic’ if the predicted model uncertainty is wider than the actual uncertainty, or
accurate but ‘overoptimistic’ if the reported confidence limits are too narrow (Fig. 5.23).

Ideally, we aim to produce prediction and prediction error maps that are both accurate and realistic
(or at least realistic). For a review of methods for assessment of uncertainty in soil maps refer to
Goovaerts (2001, pp.3–26) and/or Brus et al (2011).
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Fig. 5.23 Mapping accuracy and model reliability (accuracy of the prediction intervals vs actual intervals).
Although a method can be accurate in predicting the mean values, it could fail in predicting the prediction
intervals i.e. the associated uncertainty.

In the case discussed above (Fig. 5.22) it appears that the error estimated by the model is often
different from the actual regression-kriging variance: in this case the estimated values are often
lower than actual measured values (under-estimation), so that the whole histogram shifts toward
0 value. Because the variance of the 𝑧-scores is <1:

var(om.rk.cv$zscore, na.rm=TRUE)
#> [1] 0.95

we can also say that the regression-kriging variance is slightly over-pessimistic or too conservative
about the actual accuracy of the model. On the other hand, Fig. 5.22 shows that, at some points,
the cross-validation errors are much higher than the error estimated by the model.
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5.3.5 Derivation and interpretation of prediction interval

Another important issue for understanding the error budget is derivation of prediction interval
i.e. upper and lower values of the target variable for which we assume that our predictions will
fall within, with a high probability (e.g. 19 out of 20 times or the 95% probability). Prediction
interval or confidence limits are commonly well accepted by users as the easiest way to communicate
uncertainty (Brodlie et al, 2012). For example, organic carbon in Meuse study area (based on 153
samples of organic matter) has a 95% interval of 2–16%:

signif(quantile(meuse$om, c(.025, .975), na.rm=TRUE), 2)
#> 2.5% 98%
#> 2 16

We have previously fitted a geostatistical model using two covariates, which can now be used to
generate predictions:

om.rk <- predict(omm, meuse.grid)
#> Subsetting observations to fit the prediction domain in 2D...
#> Generating predictions using the trend model (RK method)...
#> [using ordinary kriging]
#>
100% done
#> Running 5-fold cross validation using 'krige.cv'...
#> Creating an object of class "SpatialPredictions"

and which allows us to estimate the confidence limits for organic matter (assuming normal distri-
bution) at any location within the study area e.g.:

pt1 <- data.frame(x=179390, y=330820)
coordinates(pt1) <- ~x+y
proj4string(pt1) = proj4string(meuse.grid)
pt1.om <- over(pt1, om.rk@predicted["om"])
pt1.om.sd <- over(pt1, om.rk@predicted["var1.var"])
signif(expm1(pt1.om-1.645*sqrt(pt1.om.sd)), 2)
#> om
#> 1 4.6
signif(expm1(pt1.om+1.645*sqrt(pt1.om.sd)), 2)
#> om
#> 1 8.9

where 4.6–8.9 are the upper and lower confidence limits. This interval can also be expressed as:
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signif((expm1(pt1.om+1.645*sqrt(pt1.om.sd)) -
expm1(pt1.om-1.645*sqrt(pt1.om.sd)))/2, 2)

#> om
#> 1 2.1

or 6.3 ± 2.1 where half the error of estimating organic matter at that location is about 1 s.d. Note
that these are location specific prediction intervals and need to be computed for each location.

To visualize the range of values within different strata, we can use simulations that we can generate
using the geostatistical model (which can be time-consuming to compute!):

om.rksim <- predict(omm, meuse.grid, nsim=5, debug.level=0)
#> Subsetting observations to fit the prediction domain in 2D...
#> Generating 5 conditional simulations using the trend model (RK method)...
#> Creating an object of class "RasterBrickSimulations"
ov <- as(om.rksim@realizations, "SpatialGridDataFrame")
meuse.grid$om.sim1 <- expm1(ov@data[,1][meuse.grid@grid.index])
meuse.grid$om.rk <- expm1(om.rk@predicted$om)
par(mfrow=c(1,2))
boxplot(om~ffreq, omm@regModel$data, col="grey",

xlab="Flooding frequency classes",
ylab="Organic matter in %",
main="Sampled (N = 153)", ylim=c(0,20),
cex.axis = .7, cex.main = .7, cex.lab = .7)

boxplot(om.sim1~ffreq, meuse.grid, col="grey",
xlab="Flooding frequency classes",
ylab="Organic matter in %",
main="Predicted (spatial simulations)", ylim=c(0,20),
cex.axis = .7, cex.main = .7, cex.lab = .7)
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Fig. 5.24 Prediction intervals for three flooding frequency classes for sampled and predicted soil organic matter.
The grey boxes show 1st and 3rd quantiles i.e. range where of data falls.

Fig. 5.24 shows that the confidence limits for samples (based on the geostatistical model) are
about the same width (grey boxes in the plot showing 1st and 3rd quantile), which should be the
case because geostatistical simulations are supposed maintain the original variances (see also Fig.
5.15).

What is also often of interest to soil information users is the error of estimating the mean value
i .e. standard error of the mean (SE�̄�), which can be derived using samples only (Kutner et al,
2005):

SE�̄� = 𝜎𝑥√
𝑛 − 1 (5.37)

or in R:

sd.om <- qt(0.975, df=length(meuse$om)-1) *
sd(meuse$om, na.rm=TRUE)/sqrt(length(meuse$om))

sd.om
#> [1] 0.54

Note that this is (only) the error of estimating the population mean, which is much narrower than
the actual variation inside the units. This number does not mean that we can estimate organic
matter at any location with precision of ±0.54! This number means that, if we would like to
estimate (aggregated) mean value for the whole population, then the standard error of that mean
would be ±0.54. In other words the population mean for organic matter based on 153 samples is
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7.48 ± 0.54, but if we would know the values of organic matter at specific, individual locations,
then the confidence limits are about 7.48 ± 3.4 (where 3.4 is the standard error).
The actual variation within the units based on simulations is:

lapply(levels(meuse.grid$ffreq), function(x){
sapply(subset(meuse.grid@data, ffreq==x,

select=om.sim1), sd, na.rm=TRUE)
})
#> [[1]]
#> om.sim1
#> 3
#>
#> [[2]]
#> om.sim1
#> 2.4
#>
#> [[3]]
#> om.sim1
#> 1.9

This can be confusing especially if the soil data producer does not clearly report if the confidence
limits refer to the population mean, or to individual values. In principle, most users are interested
in the confidence limits of measuring some value at an individual location, which are always
considerably wider than the confidence limits of estimating the population mean.
Assessment of the confidence limits should be best considered as a regression problem, in fact. It
can easily be shown that, by fitting a regression model on strata, we automatically get an estimate
of confidence limits for the study area:

omm0 <- lm(om~ffreq-1, omm@regModel$data)
om.r <- predict(omm0, meuse.grid, se.fit=TRUE)
meuse.grid$se.fit <- om.r$se.fit
signif(mean(meuse.grid$se.fit, na.rm=TRUE), 3)
#> [1] 0.48

This number is similar to 0.54, which we derived directly from the simulations. The difference in
the values is because the regression model estimates the prediction intervals for the whole study
area based on the covariate data (and not only for the sampling locations). The value is also
different than the previously derived 0.54 because we use ffreq stratification as a covariate, so
that, as long as the strata is relatively homogenous, the confidence limits get narrower.

Prediction intervals (upper and lower ranges of expected values with some high probability) are
possibly the most accepted way to communicate uncertainty. Users are commonly interested in
what the probability confidence limits are of measuring some value at a specific location, or the
high probability prediction range.
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To estimate the actual prediction intervals of estimating individual values (estimation error) we
need to add the residual scale value which is a constant number:

aggregate(sqrt(meuse.grid$se.fit^2+om.r$residual.scale^2),
by=list(meuse.grid$ffreq), mean, na.rm=TRUE)

#> Group.1 x
#> 1 1 3.3
#> 2 2 3.3
#> 3 3 3.3

and if we compare these limits to the confidence bands for the values predicted by the geostatistical
model fitted above:

aggregate(meuse.grid$om.sim1, by=list(meuse.grid$ffreq), sd, na.rm=TRUE)
#> Group.1 x
#> 1 1 3.0
#> 2 2 2.4
#> 3 3 1.9

we can clearly see that the geostatistical model has helped us narrow down the confidence limits,
especially for class 3.

5.3.6 Universal measures of mapping accuracy

In the examples above, we have seen that mapping accuracy can be determined by running cross-
validation and determining e.g. RMSE and R-square. In addition to R–square, a more universal
measure of prediction success is the Lin’s Concordance Correlation Coefficient (CCC) (Steichen
and Cox, 2002):

𝜌𝑐 = 2 ⋅ 𝜌 ⋅ 𝜎 ̂𝑦 ⋅ 𝜎𝑦
𝜎2

̂𝑦 + 𝜎2𝑦 + (𝜇 ̂𝑦 − 𝜇𝑦)2 (5.38)

where ̂𝑦 are the predicted values and 𝑦 are actual values at cross-validation points, 𝜇 ̂𝑦 and 𝜇𝑦
are predicted and observed means and 𝜌 is the correlation coefficient between predicted and
observed values. CCC correctly quantifies how far the observed data deviate from the line of
perfect concordance (1:1 line in Fig. 5.25). It is usually equal to or somewhat lower than R–
square, depending on the amount of bias in predictions.

CCC and variance or standard deviation of the z-scores are two universal / scale-free parameters
that can be used to assign multiple spatial prediction algorithms to work on multiple soil variables.
Two additional measures of the predictive performance of a mapping algoritm are the spatial de-
pendence structure in the cross-validation residuals and so called “accuracy plots” i.e. (Goovaerts,
1999) (Fig. 5.25). Ideally, a variogram of the residuals should show no spatial dependence (i.e.
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pure nugget effect), which is a proof that there is no spatial bias in predictions. Likewise, nominal
vs coverage probabilities in the target variable should also ideally be on a 1:1 line.

 

 

Fig. 5.25 Universal plots of predictive performance: (a) 1:1 predicted vs observed plot, (b) CCC vs standard de-
viation of the z-scores plot, (c) nominal vs coverage probabilities, and (d) variogram of cross-validation residuals.
Image source: Hengl et al. (2018) doi: 10.7717/peerj.5518.

So in summary, universal measures to access predicitive success of any spatial prediction method
are (Hengl et al, 2018a):

• Concordance Correlation Coefficient (0–1): showing predictive success of a method on a
1:1 predictions vs observations plot,

• Variance of the z-scores (0–∞): showing how reliable the modeled estimate of the prediction
errors is,

• Variogram of the cross-validation residuals: showing whether residuals still contain spatial
dependence structure,

• Accuracy plots: showing whether the model over- or under-estimates either lower or higher
values,
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5.3.7 Mapping accuracy and soil survey costs

Once the accuracy of some model have been assessed, the next measure of overall mapping success
of interest is the soil information production costs. Undoubtedly, producing soil information costs
money. Burrough et al (1971), Bie and Ulph (1972), and Bie et al (1973) postulated in the early
70s that the survey costs are a direct function of the mapping scale:

log
⎧{
⎨{⎩

cost per km2

or
man − days per km2

⎫}
⎬}⎭

= 𝑎 + 𝑏 ⋅ log(map scale) (5.39)

To produce soil information costs money. On the other hand soil information, if used properly,
can lead to significant financial benefits: accurate soil information is a tool to improve decision
making, increase crop and livestock production and help to reduce investments risk and planning
for environmental conservation.
This model typically explains >75% of the survey costs (Burrough et al, 1971). Further more, for
the given target scale, standard soil survey costs can be commonly expressed as:

𝜃 = X
𝐴 [USD km−2] (5.40)

where X is the total costs of a survey, 𝐴 is the size of area in km-square. So for example, according
to Legros (2006, p.75), to map 1 hectare of soil at 1:200,000 scale (at the beginning of the 21st
century), one needs at least 0.48 Euros (i.e. 48 EUR to map a square-km); to map soil at 1:20
would cost about 25 EUR per ha. These are the all-inclusive costs that include salaries and time
in the office needed for the work of synthesis and editing.

 

 

Fig. 5.26 Some basic concepts of soil survey costs: (a) relationship between cartographic scale and pixel size
(Hengl, 2006), (b) soil survey costs and scale relationship based on the empirical data of (Legros, 2006).

Estimated standard soil survey costs per area differ from country to country. The USDA estimates
that the total costs of soil mapping at their most detailed scale (1:20) are about 1.50 USD per
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acre i.e. about 4 USD per ha (Durana, 2008); in Canada, typical costs of producing soil maps at
1:20 are in the range 3–10 CAD per ha (MacMillan et al, 2010); in the Netherlands 3.4 EUR per
ha (Kempen, 2011, pp. 149–154); in New Zealand 4 USD per ha (Carrick et al, 2010). Based on
these national-level numbers, Hengl et al (2013) undertook to produce a global estimate of soil
survey costs. So for example, to map 1 hectare of land at 1:20 scale, one would need (at least) 5
USD, and to map soil at 1:200,000 scale globally would cost about 8 USD per square-kilometer
using conventional soil mapping methods.

A scale of 1:200,000 corresponds approximately to a ground resolution of 100 m (Fig. 5.26). If
we would like to open a call to map the world’s soils (assuming that total land area to map is
about 104 millions of square-km) using contemporary methods at 100 m resolution, and if we
would consider 8 USD per square-kilometer as a reasonable cost, then the total costs for mapping
the total productive soil areas of the world would be about 872 million USD. Of course, many
countries in the world have already been mapped at a scale of 1:200,000 or finer, so this number
could be reduced by at least 30%, but even then we would still need a considerable budget. This
is just to illustrate that soil mapping can cost an order of magnitude more than, for example, land
cover mapping.

Producing soil information costs money, but it also leads to financial benefits. Pimentel (2006) for
example shows that the costs of soil erosion, measured just by the cost of replacing lost water and
nutrients, is on the order of 250 billion USD annually. Soil information, if used properly, can also
lead to increased crop and livestock production. Carrick et al (2010), for example, show that soil
survey that costs (only) 3.99 USD per hectare, can lead to better management practices that help
retain nitrogen in the soil at a rate of 42.49 USD per kg (17.30 USD per kg for farmers, 25.19
USD per kg for the community). This also demonstrates that soil mapping can be a profitable
business.

The formula in Eq.(5.40) is somewhat incomplete as it tells us only about the cost of mapping per
unit area. Obviously, mapping efficiency has to be expressed within the context of the mapping
objective. Hence, a more informative measure of mapping efficiency is (Hengl et al, 2013):

𝜃 = X
𝐴 ⋅ Σ%

[USD km−2 %−1] (5.41)

where Σ% is the amount of variation explained by the spatial prediction model (Eq.(5.35)). In
other words, soil mapping efficiency is the total cost of explaining each percent of variation in
target soil variables for a given area of interest.
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Fig. 5.27 General relationship between the sampling intensity (i.e. survey costs) and amount of variation in the
target variable explained by a spatial prediction model. After Hengl et al. (2013) doi: 10.1016/j.jag.2012.02.005.

An even more universal measure of mapping efficiency is the Information Production Efficiency
(IPE) (Hengl et al, 2013):

Υ = X
gzip [EUR B−1] (5.42)

where gzip is the size of data (in Bytes) left after compression and after recoding the values to
match the effective precision (𝛿 ≈ RMSE/2). Information Production Efficiency is scale indepen-
dent as the area is not included in the equation and hence can be used to compare the efficiency
of various different soil mapping projects.

Soil mapping efficiency can be expressed as the cost of producing bytes of information about
the target soil variables for a given area of interest. This allows for an objective comparison of
prediction efficiency for different soil variables for different study areas.

5.3.8 Summary points

Soil mapping processes are increasingly being automated, which is mainly due to advances in
software for statistical computing and growing processing speed and computing capacity. Fully
automated geostatistical mapping, i.e. generation of spatial predictions with little to no human
interaction, is today a growing field of geoinformation science (Pebesma et al, 2011; Brown, 2015;
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Hengl et al, 2014). Some key advantages of using automated soil mapping versus more conventional,
traditional expert-based soil mapping are (Heuvelink et al, 2010; Bivand et al, 2013):

1. All rules required to produce outputs are formalized. The whole procedure is documented (the
statistical model and associated computer script), enabling reproducible research.

2. Predicted surfaces can make use of various information sources and can be optimized relative
to all available quantitative point and covariate data.

3. There is more flexibility in terms of the spatial extent, resolution and support of requested
maps.

4. Automated mapping is more cost-effective: once the system is operational, maintenance and
production of updates are an order of magnitude faster and cheaper. Consequently, prediction
maps can be updated and improved at shorter and shorter time intervals.

5. Spatial prediction models typically provide quantitative measures of prediction uncertainty (for
each prediction location), which are often not provided in the case of conventional soil mapping.

A disadvantage of automated soil mapping is that many statistical and machine learning techniques
are sensitive to errors and inconsistencies in the input data. A few typos, misaligned spatial
coordinates or misspecified models can create serious artifacts and reduce prediction accuracy,
more so than with traditional methods. Also, fitting models using large and complex data sets can
be time consuming and selection of the ‘best’ model is often problematic. Explicit incorporation of
conceptual pedological (expert) knowledge, which can be important for prediction in new situations
to address the above issues, can be challenging as well.

In contemporary soil mapping, traditional concepts such as soil map scale and size of delineations
are becoming increasingly dated or secondary. The focus of contemporary soil mapping is on
minimizing costs required to explain variation in the target variable, while support size of the
output maps can be set by the user. The amount of variation explained by a given statistical
model gradually increases with sampling intensity, until it reaches some physical limit and does
not result in any further improvements. Short-range variability and measurement error, e.g. the
portion of the variation that cannot be captured or expressed by the model, for many soil variables
can be as great as 10–40% (Fig. 5.27).

A useful thing for soil mapping teams is to compare a list of valid competing models and plot the
differences for comparison studies using what we call “predictograms” (as illustrated in Fig. 5.28).
Such comparison studies permit us to determine the best performing, and most cost effective,
pedometric method for an area of interest and a list of target variables.
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Fig. 5.28 An schematic example of a performance plot (‘predictogram’) for comparing spatial prediction models.
For more details see: Hengl et al. (2013) doi: 10.1016/j.jag.2012.02.005.

In summary, gauging the success of soil mapping basically boils down to the amount of variation
explained by the spatial prediction model i.e. quantity of effective bytes produced for the data
users. The survey costs are mainly a function of sampling intensity i.e. field work and laboratory
data analysis. As we collect more samples for an area of interest we explain more and more of
the total variance, until we reach some maximum feasible locked variation (Fig. 5.28). For a given
total budget and a list of target variables an optimal (most efficient) prediction method can be
determined by deriving the mapping efficiency described in Eq.(5.41) or even better Eq.(5.42).

Modern soil mapping is driven by the objective assessment of accuracy — emphasis is put on using
methods and covariate layers that can produce the most accurate soil information given available
resources, and much less on expert opinion or preference.

By reporting on the RMSE, effective precision, information production efficiency, and by plotting
the prediction variance estimated by the model, one gets a fairly good idea about the overall added
information value in a given map. In other words, by assessing the accuracy of a map we can
both recommend ways to improve the predictions (i.e. collect additional samples), and estimate
the resources needed to reach some target accuracy. By assessing how the accuracy of various
methods changes for various sampling intensities (Fig. 5.28), we can distinguish between methods
that are more suited for particular regions, data sets or sizes of area and optimum methods that
outperform all alternatives.





Chapter 6

Machine Learning Algorithms for soil mapping

Edited by: T. Hengl

6.1 Spatial prediction of soil properties and classes using MLA’s

This chapter reviews some common Machine learning algorithms (MLA’s) that have demonstrated
potential for soil mapping projects i.e. for generating spatial predictions (Brungard et al, 2015;
Heung et al, 2016; Behrens et al, 2018b). In this tutorial we especially focus on using tree-based
algorithms such as random forest1, gradient boosting2 and Cubist3. For a more in-depth overview
of machine learning algorithms used in statistics refer to the CRAN Task View on Machine Learn-
ing & Statistical Learning4. As a gentle introduction to Machine and Statistical Learning we
recommend:

• Irizarry, R.A., (2018) Introduction to Data Science: Data Analysis and Prediction
Algorithms with R5. HarvardX Data Science Series.

• Kuhn, M., Johnson, K. (2013) Applied Predictive Modeling6. Springer Science, ISBN:
9781461468493, 600 pages.

• Molnar, C. (2019) Interpretable Machine Learning: A Guide for Making Black Box
Models Explainable7, Leanpub, 251 pages.

Some other examples of how MLA’s can be used to fit Pedo-Transfer-Functions can be found in
section 3.8.
1 https://en.wikipedia.org/wiki/Random_forest
2 https://en.wikipedia.org/wiki/Gradient_boosting
3 https://cran.r-project.org/package=Cubist
4 https://cran.r-project.org/web/views/MachineLearning.html
5 https://rafalab.github.io/dsbook/
6 http://appliedpredictivemodeling.com
7 https://christophm.github.io/interpretable-ml-book/
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6.1.1 Loading the packages and data

We use the following packages:

library(plotKML)
#> plotKML version 0.5-9 (2019-01-04)
#> URL: http://plotkml.r-forge.r-project.org/
library(sp)
library(randomForest)
#> randomForest 4.6-14
#> Type rfNews() to see new features/changes/bug fixes.
library(nnet)
library(e1071)
library(GSIF)
#> GSIF version 0.5-5 (2019-01-04)
#> URL: http://gsif.r-forge.r-project.org/
library(plyr)
library(raster)
#>
#> Attaching package: 'raster'
#> The following object is masked from 'package:e1071':
#>
#> interpolate
library(caret)
#> Loading required package: lattice
#> Loading required package: ggplot2
#>
#> Attaching package: 'ggplot2'
#> The following object is masked from 'package:randomForest':
#>
#> margin
library(Cubist)
library(GSIF)
library(xgboost)
library(viridis)
#> Loading required package: viridisLite

Next, we load the (Ebergotzen8) data set which consists of point data collected using a soil auger
and a stack of rasters containing all covariates:

library(plotKML)
data(eberg)
data(eberg_grid)

8 http://plotkml.r-forge.r-project.org/eberg.html

http://plotkml.r-forge.r-project.org/eberg.html
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coordinates(eberg) <- ~X+Y
proj4string(eberg) <- CRS("+init=epsg:31467")
gridded(eberg_grid) <- ~x+y
proj4string(eberg_grid) <- CRS("+init=epsg:31467")

The covariates are then converted to principal components to reduce covariance and dimension-
ality:

eberg_spc <- spc(eberg_grid, ~ PRMGEO6+DEMSRT6+TWISRT6+TIRAST6)
#> Converting PRMGEO6 to indicators...
#> Converting covariates to principal components...
eberg_grid@data <- cbind(eberg_grid@data, eberg_spc@predicted@data)

All further analysis is run using the so-called regression matrix (matrix produced using the overlay
of points and grids), which contains values of the target variable and all covariates for all training
points:

ov <- over(eberg, eberg_grid)
m <- cbind(ov, eberg@data)
dim(m)
#> [1] 3670 44

In this case the regression matrix consists of 3670 observations and has 44 columns.

6.1.2 Spatial prediction of soil classes using MLA’s

In the first example, we focus on mapping soil types using the auger point data. First, we need to
filter out some classes that do not occur frequently enough to support statistical modelling. As a
rule of thumb, a class to be modelled should have at least 5 observations:

xg <- summary(m$TAXGRSC, maxsum=(1+length(levels(m$TAXGRSC))))
str(xg)
#> Named int [1:14] 71 790 86 1 186 1 704 215 252 487 ...
#> - attr(*, "names")= chr [1:14] "Auenboden" "Braunerde" "Gley" "HMoor" ...
selg.levs <- attr(xg, "names")[xg > 5]
attr(xg, "names")[xg <= 5]
#> [1] "HMoor" "Moor"

this shows that two classes probably have too few observations and should be excluded from
further modeling:
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m$soiltype <- m$TAXGRSC
m$soiltype[which(!m$TAXGRSC %in% selg.levs)] <- NA
m$soiltype <- droplevels(m$soiltype)
str(summary(m$soiltype, maxsum=length(levels(m$soiltype))))
#> Named int [1:11] 790 704 487 376 252 215 186 86 71 43 ...
#> - attr(*, "names")= chr [1:11] "Braunerde" "Parabraunerde" "Pseudogley" "Regosol" ...

We can also remove all points that contain missing values for any combination of covariates and
target variable:

m <- m[complete.cases(m[,1:(ncol(eberg_grid)+2)]),]
m$soiltype <- as.factor(m$soiltype)
summary(m$soiltype)
#> Auenboden Braunerde Gley Kolluvisol Parabraunerde
#> 48 669 68 138 513
#> Pararendzina Pelosol Pseudogley Ranker Regosol
#> 176 177 411 17 313
#> Rendzina
#> 22

We can now test fitting a MLA i.e. a random forest model using four covariate layers (parent
material map, elevation, TWI and ASTER thermal band):

## subset to speed-up:
s <- sample.int(nrow(m), 500)
TAXGRSC.rf <- randomForest(x=m[-s,paste0("PC",1:10)], y=m$soiltype[-s],

xtest=m[s,paste0("PC",1:10)], ytest=m$soiltype[s])
## accuracy:
TAXGRSC.rf$test$confusion[,"class.error"]
#> Auenboden Braunerde Gley Kolluvisol Parabraunerde
#> 0.750 0.479 0.846 0.652 0.571
#> Pararendzina Pelosol Pseudogley Ranker Regosol
#> 0.571 0.696 0.690 1.000 0.625
#> Rendzina
#> 0.500

Note that, by specifying xtest and ytest, we run both model fitting and cross-validation with
500 excluded points. The results show relatively high prediction error of about 60% i.e. relative
classification accuracy of about 40%.

We can also test some other MLA’s that are suited for this data — multinom from the nnet9 package,
and svm (Support Vector Machine) from the e107110 package:

9 https://cran.r-project.org/package=nnet
10 https://cran.r-project.org/package=e1071

https://cran.r-project.org/package=nnet
https://cran.r-project.org/package=e1071
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TAXGRSC.rf <- randomForest(x=m[,paste0("PC",1:10)], y=m$soiltype)
fm <- as.formula(paste("soiltype~", paste(paste0("PC",1:10), collapse="+")))
TAXGRSC.mn <- nnet::multinom(fm, m)
#> # weights: 132 (110 variable)
#> initial value 6119.428736
#> iter 10 value 4161.338634
#> iter 20 value 4118.296050
#> iter 30 value 4054.454486
#> iter 40 value 4020.653949
#> iter 50 value 3995.113270
#> iter 60 value 3980.172669
#> iter 70 value 3975.188371
#> iter 80 value 3973.743572
#> iter 90 value 3973.073564
#> iter 100 value 3973.064186
#> final value 3973.064186
#> stopped after 100 iterations
TAXGRSC.svm <- e1071::svm(fm, m, probability=TRUE, cross=5)
TAXGRSC.svm$tot.accuracy
#> [1] 40.1

This produces about the same accuracy levels as for random forest. Because all three methods
produce comparable accuracy, we can also merge predictions by calculating a simple average:

probs1 <- predict(TAXGRSC.mn, eberg_grid@data, type="probs", na.action = na.pass)
probs2 <- predict(TAXGRSC.rf, eberg_grid@data, type="prob", na.action = na.pass)
probs3 <- attr(predict(TAXGRSC.svm, eberg_grid@data,

probability=TRUE, na.action = na.pass), "probabilities")

derive average prediction:

leg <- levels(m$soiltype)
lt <- list(probs1[,leg], probs2[,leg], probs3[,leg])
probs <- Reduce("+", lt) / length(lt)
## copy and make new raster object:
eberg_soiltype <- eberg_grid
eberg_soiltype@data <- data.frame(probs)

Check that all predictions sum up to 100%:

ch <- rowSums(eberg_soiltype@data)
summary(ch)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 1 1 1 1 1 1
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To plot the result we can use the raster package (Fig. 6.1):
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Fig. 6.1 Predicted soil types for the Ebergotzen case study.

By using the produced predictions we can further derive Confusion Index (to map thematic un-
certainty) and see if some classes should be aggregated. We can also generate a factor-type map
by selecting the most probable class for each pixel, by using e.g.:

eberg_soiltype$cl <- as.factor(apply(eberg_soiltype@data,1,which.max))
levels(eberg_soiltype$cl) = attr(probs, "dimnames")[[2]][as.integer(levels(eberg_soiltype$cl))]
summary(eberg_soiltype$cl)
#> Auenboden Braunerde Gley Kolluvisol Parabraunerde
#> 36 2286 146 68 2253
#> Pararendzina Pelosol Pseudogley Regosol Rendzina
#> 821 439 1310 317 2324

6.1.3 Modelling numeric soil properties using h2o

Random forest is suited for both classification and regression problems (it is one of the most
popular MLA’s for soil mapping). Consequently, we can use it also for modelling numeric soil
properties i.e. to fit models and generate predictions. However, because the randomForest package
in R is not suited for large data sets, we can also use some parallelized version of random forest
(or more scalable) i.e. the one implemented in the h2o package11 (Richter et al, 2015). h2o is a
11 http://www.h2o.ai/

http://www.h2o.ai/
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Java-based implementation, therefore installing the package requires Java libraries (size of package
is about 80MB so it might take some to download and install) and all computing is, in principle,
run outside of R i.e. within the JVM (Java Virtual Machine).
In the following example we look at mapping sand content for the upper horizons. To initiate h2o
we run:

library(h2o)
localH2O = h2o.init(startH2O=TRUE)
#>
#> H2O is not running yet, starting it now...
#>
#> Note: In case of errors look at the following log files:
#> /tmp/RtmpLmjbrf/h2o_travis_started_from_r.out
#> /tmp/RtmpLmjbrf/h2o_travis_started_from_r.err
#>
#>
#> Starting H2O JVM and connecting: .. Connection successful!
#>
#> R is connected to the H2O cluster:
#> H2O cluster uptime: 2 seconds 384 milliseconds
#> H2O cluster timezone: UTC
#> H2O data parsing timezone: UTC
#> H2O cluster version: 3.22.1.1
#> H2O cluster version age: 2 months and 17 days
#> H2O cluster name: H2O_started_from_R_travis_lqb476
#> H2O cluster total nodes: 1
#> H2O cluster total memory: 1.62 GB
#> H2O cluster total cores: 2
#> H2O cluster allowed cores: 2
#> H2O cluster healthy: TRUE
#> H2O Connection ip: localhost
#> H2O Connection port: 54321
#> H2O Connection proxy: NA
#> H2O Internal Security: FALSE
#> H2O API Extensions: XGBoost, Algos, AutoML, Core V3, Core V4
#> R Version: R version 3.5.2 (2017-01-27)

This shows that multiple cores will be used for computing (to control the number of cores you
can use the nthreads argument). Next, we need to prepare the regression matrix and prediction
locations using the as.h2o function so that they are visible to h2o:

eberg.hex <- as.h2o(m, destination_frame = "eberg.hex")
eberg.grid <- as.h2o(eberg_grid@data, destination_frame = "eberg.grid")

We can now fit a random forest model by using all the computing power available to us:
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RF.m <- h2o.randomForest(y = which(names(m)=="SNDMHT_A"),
x = which(names(m) %in% paste0("PC",1:10)),
training_frame = eberg.hex, ntree = 50)

RF.m
#> Model Details:
#> ==============
#>
#> H2ORegressionModel: drf
#> Model ID: DRF_model_R_1552840950825_1
#> Model Summary:
#> number_of_trees number_of_internal_trees model_size_in_bytes min_depth
#> 1 50 50 643700 20
#> max_depth mean_depth min_leaves max_leaves mean_leaves
#> 1 20 20.00000 954 1072 1021.14000
#>
#>
#> H2ORegressionMetrics: drf
#> ** Reported on training data. **
#> ** Metrics reported on Out-Of-Bag training samples **
#>
#> MSE: 222
#> RMSE: 14.9
#> MAE: 10.1
#> RMSLE: 0.431
#> Mean Residual Deviance : 222

This shows that the model fitting R-square is about 50%. This is also indicated by the predicted
vs observed plot:

library(scales)
#>
#> Attaching package: 'scales'
#> The following object is masked from 'package:viridis':
#>
#> viridis_pal
library(lattice)
SDN.pred <- as.data.frame(h2o.predict(RF.m, eberg.hex, na.action=na.pass))$predict
plt1 <- xyplot(m$SNDMHT_A ~ SDN.pred, asp=1,

par.settings=list(
plot.symbol = list(col=scales::alpha("black", 0.6),
fill=scales::alpha("red", 0.6), pch=21, cex=0.8)),
ylab="measured", xlab="predicted (machine learning)")
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Fig. 6.2 Measured vs predicted sand content based on the Random Forest model.

To produce a map based on these predictions we use:

eberg_grid$RFx <- as.data.frame(h2o.predict(RF.m, eberg.grid, na.action=na.pass))$predict
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Fig. 6.3 Predicted sand content based on random forest.

h2o has another MLA of interest for soil mapping called deep learning (a feed-forward multilayer
artificial neural network). Fitting the model is equivalent to using random forest:
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DL.m <- h2o.deeplearning(y = which(names(m)=="SNDMHT_A"),
x = which(names(m) %in% paste0("PC",1:10)),
training_frame = eberg.hex)

DL.m
#> Model Details:
#> ==============
#>
#> H2ORegressionModel: deeplearning
#> Model ID: DeepLearning_model_R_1552840950825_2
#> Status of Neuron Layers: predicting SNDMHT_A, regression, gaussian distribution, Quadratic loss, 42,601 weights/biases, 508.3 KB, 25,520 training samples, mini-batch size 1
#> layer units type dropout l1 l2 mean_rate rate_rms
#> 1 1 10 Input 0.00 % NA NA NA NA
#> 2 2 200 Rectifier 0.00 % 0.000000 0.000000 0.016053 0.009161
#> 3 3 200 Rectifier 0.00 % 0.000000 0.000000 0.140211 0.195716
#> 4 4 1 Linear NA 0.000000 0.000000 0.001313 0.000899
#> momentum mean_weight weight_rms mean_bias bias_rms
#> 1 NA NA NA NA NA
#> 2 0.000000 0.003055 0.101850 0.362292 0.064588
#> 3 0.000000 -0.018418 0.071368 0.954337 0.021435
#> 4 0.000000 0.001017 0.049089 0.112493 0.000000
#>
#>
#> H2ORegressionMetrics: deeplearning
#> ** Reported on training data. **
#> ** Metrics reported on full training frame **
#>
#> MSE: 261
#> RMSE: 16.1
#> MAE: 12.3
#> RMSLE: 0.496
#> Mean Residual Deviance : 261

Which delivers performance comparable to the random forest model. The output prediction map
does show somewhat different patterns than the random forest predictions (compare Fig. 6.3 and
Fig. 6.4).

## predictions:
eberg_grid$DLx <- as.data.frame(h2o.predict(DL.m, eberg.grid, na.action=na.pass))$predict
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Fig. 6.4 Predicted sand content based on deep learning.

Which of the two methods should we use? Since they both have comparable performance, the
most logical option is to generate ensemble (merged) predictions i.e. to produce a map that shows
patterns averaged between the two methods (note: many sophisticated MLA such as random
forest, neural nets, SVM and similar will often produce comparable results i.e. they are often
equally applicable and there is no clear winner). We can use weighted average i.e. R-square as a
simple approach to produce merged predictions:

rf.R2 <- RF.m@model$training_metrics@metrics$r2
dl.R2 <- DL.m@model$training_metrics@metrics$r2
eberg_grid$SNDMHT_A <- rowSums(cbind(eberg_grid$RFx*rf.R2,

eberg_grid$DLx*dl.R2), na.rm=TRUE)/(rf.R2+dl.R2)
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Fig. 6.5 Predicted sand content based on ensemble predictions.

Indeed, the output map now shows patterns of both methods and is more likely slightly more
accurate than any of the individual MLA’s (Sollich and Krogh, 1996).

6.1.4 Spatial prediction of 3D (numeric) variables

In the final exercise, we look at another two ML-based packages that are also of interest for soil
mapping projects — cubist (Kuhn et al, 2012; Kuhn and Johnson, 2013) and xgboost (Chen and
Guestrin, 2016). The object is now to fit models and predict continuous soil properties in 3D. To
fine-tune some of the models we will also use the caret12 package, which is highly recommended for
optimizing model fitting and cross-validation. Read more about how to derive soil organic carbon
stock using 3D soil mapping in section 7.7.
We will use another soil mapping data set from Australia called “Edgeroi”13, which is described
in detail in Malone et al (2009). We can load the profile data and covariates by using:

data(edgeroi)
edgeroi.sp <- edgeroi$sites
coordinates(edgeroi.sp) <- ~ LONGDA94 + LATGDA94
proj4string(edgeroi.sp) <- CRS("+proj=longlat +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +no_defs")
edgeroi.sp <- spTransform(edgeroi.sp, CRS("+init=epsg:28355"))
load("extdata/edgeroi.grids.rda")
gridded(edgeroi.grids) <- ~x+y
proj4string(edgeroi.grids) <- CRS("+init=epsg:28355")

12 http://topepo.github.io/caret/
13 http://gsif.r-forge.r-project.org/edgeroi.html

http://topepo.github.io/caret/
http://gsif.r-forge.r-project.org/edgeroi.html
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Here we are interested in modelling soil organic carbon content in g/kg for different depths. We
again start by producing the regression matrix:

ov2 <- over(edgeroi.sp, edgeroi.grids)
ov2$SOURCEID <- edgeroi.sp$SOURCEID
str(ov2)
#> 'data.frame': 359 obs. of 7 variables:
#> $ DEMSRT5 : num 208 199 203 202 195 201 198 210 190 195 ...
#> $ TWISRT5 : num 19.8 19.9 19.7 19.3 19.3 19.7 19.5 19.6 19.6 19.2 ...
#> $ PMTGEO5 : Factor w/ 7 levels "Qd","Qrs","Qrt/Jp",..: 2 2 2 2 2 2 2 2 2 2 ...
#> $ EV1MOD5 : num -0.08 2.41 2.62 -0.39 -0.78 -0.75 1.14 5.16 -0.48 -0.84 ...
#> $ EV2MOD5 : num -2.47 -2.84 -2.43 5.2 1.27 -4.96 1.62 1.33 -2.66 1.01 ...
#> $ EV3MOD5 : num -1.59 -0.31 1.43 1.96 -0.44 2.47 -5.74 -6.78 2.29 -1.59 ...
#> $ SOURCEID: Factor w/ 359 levels "199_CAN_CP111_1",..: 1 2 3 4 5 6 7 8 9 10 ...

Because we will run 3D modelling, we also need to add depth of horizons. We use a small function
to assign depth values as the center depth of each horizon (as shown in figure below). Because we
know where the horizons start and stop, we can copy the values of target variables two times so
that the model knows at which depths values of properties change.

## Convert soil horizon data to x,y,d regression matrix for 3D modeling:
hor2xyd <- function(x, U="UHDICM", L="LHDICM", treshold.T=15){
x$DEPTH <- x[,U] + (x[,L] - x[,U])/2
x$THICK <- x[,L] - x[,U]
sel <- x$THICK < treshold.T
## begin and end of the horizon:
x1 <- x[!sel,]; x1$DEPTH = x1[,L]
x2 <- x[!sel,]; x2$DEPTH = x1[,U]
y <- do.call(rbind, list(x, x1, x2))
return(y)

}
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Fig. 6.6 Training points assigned to a soil profile with 3 horizons. Using the function from above, we assign a
total of 7 training points i.e. about 2 times more training points than there are horizons.

h2 <- hor2xyd(edgeroi$horizons)
## regression matrix:
m2 <- plyr::join_all(dfs = list(edgeroi$sites, h2, ov2))
#> Joining by: SOURCEID
#> Joining by: SOURCEID
## spatial prediction model:
formulaStringP2 <- ORCDRC ~ DEMSRT5+TWISRT5+PMTGEO5+

EV1MOD5+EV2MOD5+EV3MOD5+DEPTH
mP2 <- m2[complete.cases(m2[,all.vars(formulaStringP2)]),]

Note that DEPTH is used as a covariate, which makes this model 3D as one can predict anywhere
in 3D space. To improve random forest modelling, we use the caret package that tries to identify
also the optimal mtry parameter i.e. based on the cross-validation performance:

library(caret)
ctrl <- trainControl(method="repeatedcv", number=5, repeats=1)
sel <- sample.int(nrow(mP2), 500)
tr.ORCDRC.rf <- train(formulaStringP2, data = mP2[sel,],

method = "rf", trControl = ctrl, tuneLength = 3)
tr.ORCDRC.rf
#> Random Forest
#>
#> 500 samples
#> 7 predictor
#>
#> No pre-processing
#> Resampling: Cross-Validated (5 fold, repeated 1 times)
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#> Summary of sample sizes: 399, 401, 399, 401, 400
#> Resampling results across tuning parameters:
#>
#> mtry RMSE Rsquared MAE
#> 2 4.36 0.525 2.83
#> 7 4.17 0.552 2.45
#> 12 4.36 0.527 2.51
#>
#> RMSE was used to select the optimal model using the smallest value.
#> The final value used for the model was mtry = 7.

In this case, mtry = 12 seems to achieve the best performance. Note that we sub-set the initial matrix
to speed up fine-tuning of the parameters (otherwise the computing time could easily become too
great). Next, we can fit the final model by using all data (this time we also turn cross-validation
off):

ORCDRC.rf <- train(formulaStringP2, data=mP2,
method = "rf", tuneGrid=data.frame(mtry=7),
trControl=trainControl(method="none"))

w1 <- 100*max(tr.ORCDRC.rf$results$Rsquared)

The variable importance plot indicates that DEPTH is by far the most important predictor:
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Fig. 6.7 Variable importance plot for predicting soil organic carbon content (ORC) in 3D.

We can also try fitting models using the xgboost package and the cubist packages:
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tr.ORCDRC.cb <- train(formulaStringP2, data=mP2[sel,],
method = "cubist", trControl = ctrl, tuneLength = 3)

ORCDRC.cb <- train(formulaStringP2, data=mP2,
method = "cubist",
tuneGrid=data.frame(committees = 1, neighbors = 0),
trControl=trainControl(method="none"))

w2 <- 100*max(tr.ORCDRC.cb$results$Rsquared)
## "XGBoost" package:
ORCDRC.gb <- train(formulaStringP2, data=mP2, method = "xgbTree", trControl=ctrl)
w3 <- 100*max(ORCDRC.gb$results$Rsquared)
c(w1, w2, w3)
#> [1] 55.2 54.9 69.4

At the end of the statistical modelling process, we can merge the predictions by using the CV
R-square estimates:

edgeroi.grids$DEPTH <- 2.5
edgeroi.grids$Random_forest <- predict(ORCDRC.rf, edgeroi.grids@data,

na.action = na.pass)
edgeroi.grids$Cubist <- predict(ORCDRC.cb, edgeroi.grids@data, na.action = na.pass)
edgeroi.grids$XGBoost <- predict(ORCDRC.gb, edgeroi.grids@data, na.action = na.pass)
edgeroi.grids$ORCDRC_5cm <- (edgeroi.grids$Random_forest*w1 +

edgeroi.grids$Cubist*w2 +
edgeroi.grids$XGBoost*w3)/(w1+w2+w3)
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Fig. 6.8 Comparison of three MLA’s and the final ensemble prediction (ORCDRC 5cm) of soil organic carbon
content for 2.5 cm depth.
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The final plot shows that xgboost possibly over-predicts and that cubist possibly under-predicts
values of ORCDRC, while random forest is somewhere in-between the two. Again, merged predic-
tions are probably the safest option considering that all three MLA’s have similar measures of
performance.

We can quickly test the overall performance using a script on github prepared for testing perfor-
mance of merged predictions:

source_https <- function(url, ...) {
require(RCurl)
if(!file.exists(paste0("R/", basename(url)))){

cat(getURL(url, followlocation = TRUE,
cainfo = system.file("CurlSSL", "cacert.pem", package = "RCurl")),

file = paste0("R/", basename(url)))
}
source(paste0("R/", basename(url)))

}
wdir = "https://raw.githubusercontent.com/ISRICWorldSoil/SoilGrids250m/"
source_https(paste0(wdir, "master/grids/cv/cv_functions.R"))
#> Loading required package: RCurl
#> Loading required package: bitops

We can hence run 5-fold cross validation:

mP2$SOURCEID = paste(mP2$SOURCEID)
test.ORC <- cv_numeric(formulaStringP2, rmatrix=mP2,

nfold=5, idcol="SOURCEID", Log=TRUE)
#> Running 5-fold cross validation with model re-fitting method ranger ...
#> Subsetting observations by unique location
#> Loading required package: snowfall
#> Loading required package: snow
#> Warning in searchCommandline(parallel, cpus = cpus, type = type,
#> socketHosts = socketHosts, : Unknown option on commandline: --file
#> R Version: R version 3.5.2 (2017-01-27)
#> snowfall 1.84-6.1 initialized (using snow 0.4-3): parallel execution on 2 CPUs.
#> Library plyr loaded.
#> Library plyr loaded in cluster.
#> Library ranger loaded.
#> Library ranger loaded in cluster.
#>
#> Attaching package: 'ranger'
#> The following object is masked from 'package:randomForest':
#>
#> importance
#>
#> Stopping cluster
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str(test.ORC)
#> List of 2
#> $ CV_residuals:'data.frame': 4972 obs. of 4 variables:
#> ..$ Observed : num [1:4972] 14.5 13.6 10.1 12.1 7.1 ...
#> ..$ Predicted: num [1:4972] 15.57 10.83 8.82 5.72 3.69 ...
#> ..$ SOURCEID : chr [1:4972] "399_EDGEROI_ed017_1" "399_EDGEROI_ed017_1" "399_EDGEROI_ed017_1" "399_EDGEROI_ed017_1" ...
#> ..$ fold : int [1:4972] 1 1 1 1 1 1 1 1 1 1 ...
#> $ Summary :'data.frame': 1 obs. of 6 variables:
#> ..$ ME : num -0.123
#> ..$ MAE : num 2.13
#> ..$ RMSE : num 3.63
#> ..$ R.squared : num 0.57
#> ..$ logRMSE : num 0.484
#> ..$ logR.squared: num 0.65

Which shows that the R-squared based on cross-validation is about 65% i.e. the average error
of predicting soil organic carbon content using ensemble method is about ±4 g/kg. The final
observed-vs-predict plot shows that the model is unbiased and that the predictions generally
match cross-validation points:

plt0 <- xyplot(test.ORC[[1]]$Observed ~ test.ORC[[1]]$Predicted, asp=1,
par.settings = list(plot.symbol = list(col=scales::alpha("black", 0.6), fill=scales::alpha("red", 0.6), pch=21, cex=0.6)),
scales = list(x=list(log=TRUE, equispaced.log=FALSE), y=list(log=TRUE, equispaced.log=FALSE)),
ylab="measured", xlab="predicted (machine learning)")

 

 

Fig. 6.9 Predicted vs observed plot for soil organic carbon ML-based model (Edgeroi data set).
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6.1.5 Ensemble predictions using h2oEnsemble

Ensemble models often outperform single models. There is certainly opportunity for increasing
mapping accuracy by combining the power of 3–4 MLA’s. The h2o environment for ML offers
automation of ensemble model fitting and predictions (LeDell, 2015).

#> h2oEnsemble R package for H2O-3
#> Version: 0.2.1
#> Package created on 2017-08-02

we first specify all learners (MLA methods) of interest:

k.f = dismo::kfold(mP2, k=4)
summary(as.factor(k.f))
#> 1 2 3 4
#> 1243 1243 1243 1243
## split data into training and validation:
edgeroi_v.hex = as.h2o(mP2[k.f==1,], destination_frame = "eberg_v.hex")
edgeroi_t.hex = as.h2o(mP2[!k.f==1,], destination_frame = "eberg_t.hex")
learner <- c("h2o.randomForest.wrapper", "h2o.gbm.wrapper")
fit <- h2o.ensemble(x = which(names(m2) %in% all.vars(formulaStringP2)[-1]),

y = which(names(m2)=="ORCDRC"),
training_frame = edgeroi_t.hex, learner = learner,
cvControl = list(V = 5))

#> [1] "Cross-validating and training base learner 1: h2o.randomForest.wrapper"
#> Warning in h2o.randomForest(x = x, y = y, training_frame =
#> training_frame, : Argument offset_column is deprecated and has no use for
#> Random Forest.
#> [1] "Cross-validating and training base learner 2: h2o.gbm.wrapper"
#> [1] "Metalearning"
perf <- h2o.ensemble_performance(fit, newdata = edgeroi_v.hex)
#> Warning in doTryCatch(return(expr), name, parentenv, handler): Test/
#> Validation dataset is missing column 'fold_id': substituting in a column of
#> 0.0
#> Warning in doTryCatch(return(expr), name, parentenv, handler): Test/
#> Validation dataset is missing column 'fold_id': substituting in a column of
#> 0.0
perf
#>
#> Base learner performance, sorted by specified metric:
#> learner MSE
#> 2 h2o.gbm.wrapper 9.81
#> 1 h2o.randomForest.wrapper 8.81
#>
#>
#> H2O Ensemble Performance on <newdata>:
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#> ----------------
#> Family: gaussian
#>
#> Ensemble performance (MSE): 8.67670119633791

which shows that, in this specific case, the ensemble model is only slightly better than a single
model. Note that we would need to repeat testing the ensemble modeling several times until we
can be certain any actual actual gain in accuracy.

We can also test ensemble predictions using the cookfarm data set (Gasch et al, 2015). This data
set consists of 183 profiles, each consisting of multiple soil horizons (1050 in total). To create a
regression matrix we use:

data(cookfarm)
cookfarm.hor <- cookfarm$profiles
str(cookfarm.hor)
#> 'data.frame': 1050 obs. of 9 variables:
#> $ SOURCEID: Factor w/ 369 levels "CAF001","CAF002",..: 3 3 3 3 3 5 5 5 5 5 ...
#> $ Easting : num 493383 493383 493383 493383 493383 ...
#> $ Northing: num 5180586 5180586 5180586 5180586 5180586 ...
#> $ TAXSUSDA: Factor w/ 6 levels "Caldwell","Latah",..: 3 3 3 3 3 4 4 4 4 4 ...
#> $ HZDUSD : Factor w/ 67 levels "2R","A","A1",..: 12 2 7 35 36 12 2 16 43 44 ...
#> $ UHDICM : num 0 21 39 65 98 0 17 42 66 97 ...
#> $ LHDICM : num 21 39 65 98 153 17 42 66 97 153 ...
#> $ BLD : num 1.46 1.37 1.52 1.72 1.72 1.56 1.33 1.36 1.37 1.48 ...
#> $ PHIHOX : num 4.69 5.9 6.25 6.54 6.75 4.12 5.73 6.26 6.59 6.85 ...
cookfarm.hor$depth <- cookfarm.hor$UHDICM +
(cookfarm.hor$LHDICM - cookfarm.hor$UHDICM)/2

sel.id <- !duplicated(cookfarm.hor$SOURCEID)
cookfarm.xy <- cookfarm.hor[sel.id,c("SOURCEID","Easting","Northing")]
str(cookfarm.xy)
#> 'data.frame': 183 obs. of 3 variables:
#> $ SOURCEID: Factor w/ 369 levels "CAF001","CAF002",..: 3 5 7 9 11 13 15 17 19 21 ...
#> $ Easting : num 493383 493447 493511 493575 493638 ...
#> $ Northing: num 5180586 5180572 5180568 5180573 5180571 ...
coordinates(cookfarm.xy) <- ~ Easting + Northing
grid10m <- cookfarm$grids
coordinates(grid10m) <- ~ x + y
gridded(grid10m) = TRUE
ov.cf <- over(cookfarm.xy, grid10m)
rm.cookfarm <- plyr::join(cookfarm.hor, cbind(cookfarm.xy@data, ov.cf))
#> Joining by: SOURCEID

Here, we are interested in predicting soil pH in 3D, hence we will use a model of form:
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fm.PHI <- PHIHOX~DEM+TWI+NDRE.M+Cook_fall_ECa+Cook_spr_ECa+depth
rc <- complete.cases(rm.cookfarm[,all.vars(fm.PHI)])
mP3 <- rm.cookfarm[rc,all.vars(fm.PHI)]
str(mP3)
#> 'data.frame': 997 obs. of 7 variables:
#> $ PHIHOX : num 4.69 5.9 6.25 6.54 6.75 4.12 5.73 6.26 6.59 6.85 ...
#> $ DEM : num 788 788 788 788 788 ...
#> $ TWI : num 4.3 4.3 4.3 4.3 4.3 ...
#> $ NDRE.M : num -0.0512 -0.0512 -0.0512 -0.0512 -0.0512 ...
#> $ Cook_fall_ECa: num 7.7 7.7 7.7 7.7 7.7 ...
#> $ Cook_spr_ECa : num 33 33 33 33 33 ...
#> $ depth : num 10.5 30 52 81.5 125.5 ...

We can again test fitting an ensemble model using two MLA’s:

k.f3 <- dismo::kfold(mP3, k=4)
## split data into training and validation:
cookfarm_v.hex <- as.h2o(mP3[k.f3==1,], destination_frame = "cookfarm_v.hex")
cookfarm_t.hex <- as.h2o(mP3[!k.f3==1,], destination_frame = "cookfarm_t.hex")
learner3 = c("h2o.glm.wrapper", "h2o.randomForest.wrapper",

"h2o.gbm.wrapper", "h2o.deeplearning.wrapper")
fit3 <- h2o.ensemble(x = which(names(mP3) %in% all.vars(fm.PHI)[-1]),

y = which(names(mP3)=="PHIHOX"),
training_frame = cookfarm_t.hex, learner = learner3,
cvControl = list(V = 5))

#> [1] "Cross-validating and training base learner 1: h2o.glm.wrapper"
#> [1] "Cross-validating and training base learner 2: h2o.randomForest.wrapper"
#> Warning in h2o.randomForest(x = x, y = y, training_frame =
#> training_frame, : Argument offset_column is deprecated and has no use for
#> Random Forest.
#> [1] "Cross-validating and training base learner 3: h2o.gbm.wrapper"
#> [1] "Cross-validating and training base learner 4: h2o.deeplearning.wrapper"
#> [1] "Metalearning"
perf3 <- h2o.ensemble_performance(fit3, newdata = cookfarm_v.hex)
#> Warning in doTryCatch(return(expr), name, parentenv, handler): Test/
#> Validation dataset is missing column 'fold_id': substituting in a column of
#> 0.0
#> Warning in doTryCatch(return(expr), name, parentenv, handler): Test/
#> Validation dataset is missing column 'fold_id': substituting in a column of
#> 0.0

#> Warning in doTryCatch(return(expr), name, parentenv, handler): Test/
#> Validation dataset is missing column 'fold_id': substituting in a column of
#> 0.0

#> Warning in doTryCatch(return(expr), name, parentenv, handler): Test/
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#> Validation dataset is missing column 'fold_id': substituting in a column of
#> 0.0
perf3
#>
#> Base learner performance, sorted by specified metric:
#> learner MSE
#> 1 h2o.glm.wrapper 0.2827
#> 4 h2o.deeplearning.wrapper 0.1294
#> 3 h2o.gbm.wrapper 0.0971
#> 2 h2o.randomForest.wrapper 0.0755
#>
#>
#> H2O Ensemble Performance on <newdata>:
#> ----------------
#> Family: gaussian
#>
#> Ensemble performance (MSE): 0.0742393371581637

In this case Ensemble performance (MSE) seems to be as bad as the single best spatial predictor
(random forest in this case). This illustrates that ensemble predictions are sometimes not beneficial.

h2o.shutdown()
#> Are you sure you want to shutdown the H2O instance running at http://localhost:54321/ (Y/N)?
#> [1] TRUE

6.1.6 Ensemble predictions using SuperLearner package

Another interesting package to generate ensemble predictions of soil properties and classes is the
SuperLearner package (Polley and Van Der Laan, 2010). This package has many more options
than h2o.ensemble considering the number of methods available for consideration:

library(SuperLearner)
#> Loading required package: nnls
#> Super Learner
#> Version: 2.0-24
#> Package created on 2018-08-10
# List available models:
listWrappers()
#> All prediction algorithm wrappers in SuperLearner:
#> [1] "SL.bartMachine" "SL.bayesglm" "SL.biglasso"
#> [4] "SL.caret" "SL.caret.rpart" "SL.cforest"
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#> [7] "SL.dbarts" "SL.earth" "SL.extraTrees"
#> [10] "SL.gam" "SL.gbm" "SL.glm"
#> [13] "SL.glm.interaction" "SL.glmnet" "SL.ipredbagg"
#> [16] "SL.kernelKnn" "SL.knn" "SL.ksvm"
#> [19] "SL.lda" "SL.leekasso" "SL.lm"
#> [22] "SL.loess" "SL.logreg" "SL.mean"
#> [25] "SL.nnet" "SL.nnls" "SL.polymars"
#> [28] "SL.qda" "SL.randomForest" "SL.ranger"
#> [31] "SL.ridge" "SL.rpart" "SL.rpartPrune"
#> [34] "SL.speedglm" "SL.speedlm" "SL.step"
#> [37] "SL.step.forward" "SL.step.interaction" "SL.stepAIC"
#> [40] "SL.svm" "SL.template" "SL.xgboost"
#>
#> All screening algorithm wrappers in SuperLearner:
#> [1] "All"
#> [1] "screen.corP" "screen.corRank" "screen.glmnet"
#> [4] "screen.randomForest" "screen.SIS" "screen.template"
#> [7] "screen.ttest" "write.screen.template"

where SL. refers to an imported method from a package e.g. "SL.ranger" is the SuperLearner method
from the package ranger.

A useful functionality of the SuperLearner package is that it displays how model average weights
are estimated and which methods can safely be excluded from predictions. When using Super-
Learner, however, it is highly recommended to use the parallelized / multicore version, otherwise
the computing time might be quite excessive. For example, to prepare ensemble predictions using
the five standard prediction techniques used in this tutorial we would run:

## detach snowfall package otherwise possible conflicts
#detach("package:snowfall", unload=TRUE)
library(parallel)
#>
#> Attaching package: 'parallel'
#> The following objects are masked from 'package:snow':
#>
#> clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
#> clusterExport, clusterMap, clusterSplit, makeCluster,
#> parApply, parCapply, parLapply, parRapply, parSapply,
#> splitIndices, stopCluster
sl.l = c("SL.mean", "SL.xgboost", "SL.ksvm", "SL.glmnet", "SL.ranger")
cl <- parallel::makeCluster(detectCores())
x <- parallel::clusterEvalQ(cl, library(SuperLearner))
sl <- snowSuperLearner(Y = mP3$PHIHOX,

X = mP3[,all.vars(fm.PHI)[-1]],
cluster = cl,
SL.library = sl.l)
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#> Loading required package: glmnet
#> Loading required package: Matrix
#> Loading required package: foreach
#> Loaded glmnet 2.0-16
sl
#>
#> Call:
#> snowSuperLearner(cluster = cl, Y = mP3$PHIHOX, X = mP3[, all.vars(fm.PHI)[-1]],
#> SL.library = sl.l)
#>
#>
#> Risk Coef
#> SL.mean_All 0.7540 0.0000
#> SL.xgboost_All 0.0598 0.8166
#> SL.ksvm_All 0.1290 0.0133
#> SL.glmnet_All 0.3076 0.0000
#> SL.ranger_All 0.0850 0.1701

This shows that SL.xgboost_All outperforms the competition by a large margin. Since this is a
relatively small data set, RMSE produced by SL.xgboost_All is probably unrealistically small. If we
only use the top three models (XGboost, ranger and ksvm) in comparison we get:

sl.l2 = c("SL.xgboost", "SL.ranger", "SL.ksvm")
sl2 <- snowSuperLearner(Y = mP3$PHIHOX,

X = mP3[,all.vars(fm.PHI)[-1]],
cluster = cl,
SL.library = sl.l2)

sl2
#>
#> Call:
#> snowSuperLearner(cluster = cl, Y = mP3$PHIHOX, X = mP3[, all.vars(fm.PHI)[-1]],
#> SL.library = sl.l2)
#>
#>
#> Risk Coef
#> SL.xgboost_All 0.0603 0.81
#> SL.ranger_All 0.0832 0.19
#> SL.ksvm_All 0.1298 0.00

again SL.xgboost dominates the ensemble model, which is most likely unrealistic because most of
the training data is spatially clustered and hence XGboost is probably over-fitting. To estimate
actual accuracy of predicting soil pH using these two techniques we can run cross-validation where
entire profiles are taken out of the training dataset:
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str(rm.cookfarm$SOURCEID)
#> Factor w/ 369 levels "CAF001","CAF002",..: 3 3 3 3 3 5 5 5 5 5 ...
cv_sl <- CV.SuperLearner(Y = mP3$PHIHOX,

X = mP3[,all.vars(fm.PHI)[-1]],
parallel = cl,
SL.library = sl.l2,
V=5, id=rm.cookfarm$SOURCEID[rc],
verbose=TRUE)

summary(cv_sl)
#>
#> Call:
#> CV.SuperLearner(Y = mP3$PHIHOX, X = mP3[, all.vars(fm.PHI)[-1]], V = 5,
#> SL.library = sl.l2, id = rm.cookfarm$SOURCEID[rc], verbose = TRUE,
#> parallel = cl)
#>
#> Risk is based on: Mean Squared Error
#>
#> All risk estimates are based on V = 5
#>
#> Algorithm Ave se Min Max
#> Super Learner 0.16 0.014 0.098 0.26
#> Discrete SL 0.17 0.014 0.118 0.25
#> SL.xgboost_All 0.19 0.016 0.135 0.27
#> SL.ranger_All 0.17 0.015 0.105 0.25
#> SL.ksvm_All 0.18 0.014 0.109 0.30

where V=5 specifies number of folds, and id=rm.cookfarm$SOURCEID enforces that entire profiles are
removed from training and cross-validation. This gives a more realistic RMSE of about ±0.35.
Note that this time SL.xgboost_All is even somewhat worse than the random forest model, and the
ensemble model (Super Learner) is slightly better than each individual model. This matches our
previous results with h20.ensemble.

To produce predictions of soil pH at 10 cm depth we can finally use:

sl2 <- snowSuperLearner(Y = mP3$PHIHOX,
X = mP3[,all.vars(fm.PHI)[-1]],
cluster = cl,
SL.library = sl.l2,
id=rm.cookfarm$SOURCEID[rc],
cvControl=list(V=5))

sl2
#>
#> Call:
#> snowSuperLearner(cluster = cl, Y = mP3$PHIHOX, X = mP3[, all.vars(fm.PHI)[-1]],
#> SL.library = sl.l2, id = rm.cookfarm$SOURCEID[rc], cvControl = list(V = 5))
#>
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#>
#>
#> Risk Coef
#> SL.xgboost_All 0.215 0.000
#> SL.ranger_All 0.166 0.459
#> SL.ksvm_All 0.163 0.541
new.data <- grid10m@data
pred.PHI <- list(NULL)
depths = c(10,30,50,70,90)
for(j in 1:length(depths)){
new.data$depth = depths[j]
pred.PHI[[j]] <- predict(sl2, new.data[,sl2$varNames])

}
#> Loading required package: kernlab
#>
#> Attaching package: 'kernlab'
#> The following object is masked from 'package:scales':
#>
#> alpha
#> The following object is masked from 'package:ggplot2':
#>
#> alpha
#> The following objects are masked from 'package:raster':
#>
#> buffer, rotated
str(pred.PHI[[1]])
#> List of 2
#> $ pred : num [1:3865, 1] 4.64 4.71 4.85 4.82 4.75 ...
#> $ library.predict: num [1:3865, 1:3] 4.15 4.11 4.45 4.75 4.78 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : NULL
#> .. ..$ : chr [1:3] "SL.xgboost_All" "SL.ranger_All" "SL.ksvm_All"

this yields two outputs:

• ensemble prediction in the pred matrix,
• list of individual predictions in the library.predict matrix,

To visualize the predictions (at six depths) we can run:

for(j in 1:length(depths)){
grid10m@data[,paste0("PHI.", depths[j],"cm")] <- pred.PHI[[j]]$pred[,1]

}
spplot(grid10m, paste0("PHI.", depths,"cm"),

col.regions=R_pal[["pH_pal"]], as.table=TRUE)
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Fig. 6.10 Predicted soil pH using 3D ensemble model.

The second prediction matrix can be used to determine model uncertainty:

library(matrixStats)
#>
#> Attaching package: 'matrixStats'
#> The following object is masked from 'package:plyr':
#>
#> count
grid10m$PHI.10cm.sd <- rowSds(pred.PHI[[1]]$library.predict, na.rm=TRUE)
pts = list("sp.points", cookfarm.xy, pch="+", col="black", cex=1.4)
spplot(grid10m, "PHI.10cm.sd", sp.layout = list(pts), col.regions=rev(bpy.colors()))
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Fig. 6.11 Example of variance of prediction models for soil pH.

which highlights the especially problematic areas, in this case most likely correlated with ex-
trapolation in feature space. Before we stop computing, we need to close the cluster session by
using:

stopCluster(cl)

6.2 A generic framework for spatial prediction using Random Forest

We have seen, in the above examples, that MLA’s can be used efficiently to map soil properties
and classes. Most currently used MLA’s, however, ignore the spatial locations of the observations
and hence overlook any spatial autocorrelation in the data not accounted for by the covariates.
Spatial auto-correlation, especially if it remains visible in the cross-validation residuals, indicates
that the predictions are perhaps biased, and this is sub-optimal. To account for this, Hengl et al
(2018a) describe a framework for using Random Forest (as implemented in the ranger package) in
combination with geographical distances to sampling locations (which provide measures of relative
spatial location) to fit models and predict values (RFsp).

6.2.1 General principle of RFsp

RF is, in essence, a non-spatial approach to spatial prediction, as the sampling locations and
general sampling pattern are both ignored during the estimation of MLA model parameters. This
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can potentially lead to sub-optimal predictions and possibly systematic over- or under-prediction,
especially where the spatial autocorrelation in the target variable is high and where point patterns
show clear sampling bias. To overcome this problem Hengl et al (2018a) propose the following
generic “RFsp” system:

𝑌 (s) = 𝑓 (X𝐺, X𝑅, X𝑃 ) (6.1)

where X𝐺 are covariates accounting for geographical proximity and spatial relations between
observations (to mimic spatial correlation used in kriging):

X𝐺 = (𝑑𝑝1, 𝑑𝑝2, … , 𝑑𝑝𝑁) (6.2)

where 𝑑𝑝𝑖 is the buffer distance (or any other complex proximity upslope/downslope distance, as
explained in the next section) to the observed location 𝑝𝑖 from s and 𝑁 is the total number of
training points. X𝑅 are surface reflectance covariates, i.e. usually spectral bands of remote sensing
images, and X𝑃 are process-based covariates. For example, the Landsat infrared band is a surface
reflectance covariate, while the topographic wetness index and soil weathering index are process-
based covariates. Geographic covariates are often smooth and reflect geometric composition of
points, reflectance-based covariates can exhibit a significant amount of noise and usually provide
information only about the surface of objects. Process-based covariates require specialized knowl-
edge and rethinking of how to best represent processes. Assuming that the RFsp is fitted only
using the XG, the predictions would resemble ordinary kriging (OK). If All covariates are used
Eq. (6.1), RFsp would resemble regression-kriging (RK). Similar framework where distances to
the center and edges of the study area and similar are used for prediction has been also proposed
by Behrens et al (2018c).

6.2.2 Geographical covariates

One of the key principles of geography is that “everything is related to everything else, but near
things are more related than distant things” (Miller, 2004). This principle forms the basis of geo-
statistics, which converts this rule into a mathematical model, i.e., through spatial autocorrelation
functions or variograms. The key to making RF applicable to spatial statistics problems, there-
fore, lies also in preparing geographical (spatial) measures of proximity and connectivity between
observations, so that spatial autocorrelation can be accounted for. There are multiple options for
variables that quantify proximity and geographical connection (Fig. 6.12):

1. Geographical coordinates 𝑠1 and 𝑠2, i.e., easting and northing.
2. Euclidean distances to reference points in the study area. For example, distance to the center

and edges of the study area, etc (Behrens et al, 2018c).
3. Euclidean distances to sampling locations, i.e., distances from observation locations. Here one

buffer distance map can be generated per observation point or group of points. These are
essentially the same distance measures as used in geostatistics.

4. Downslope distances, i.e., distances within a watershed: for each sampling point one can derive
upslope/downslope distances to the ridges and hydrological network and/or downslope or ups-
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lope areas (Gruber and Peckham, 2009). This requires, in addition to using a Digital Elevation
Model, implementing a hydrological analysis of the terrain.

5. Resistance distances or weighted buffer distances, i.e., distances of the cumulative effort derived
using terrain ruggedness and/or natural obstacles.

The gdistance14 package, for example, provides a framework to derive complex distances based
on terrain complexity (van Etten, 2017). Here additional inputs required to compute complex
distances are the Digital Elevation Model (DEM) and DEM-derivatives, such as slope (Fig. 6.12b).
SAGA GIS (Conrad et al, 2015) offers a wide variety of DEM derivatives that can be derived per
location of interest.

 

 

Fig. 6.12 Examples of distance maps to some location in space (yellow dot) based on different derivation
algorithms: (a) simple Euclidean distances, (b) complex speed-based distances based on the gdistance package
and Digital Elevation Model (DEM), and (c) upslope area derived based on the DEM in SAGA GIS. Image
source: Hengl et al. (2018) doi: 10.7717/peerj.5518.

Here, we only illustrate predictive performance using Euclidean buffer distances (to all sampling
points), but the code could be adapted to include other families of geographical covariates (as
shown in Fig. 6.12). Note also that RF tolerates a high number of covariates and multicolinear-
ity (Biau and Scornet, 2016), hence multiple types of geographical covariates (Euclidean buffer
distances, upslope and downslope areas) could be considered concurrently.

6.2.3 Spatial prediction 2D continuous variable using RFsp

To run these examples, it is recommended to install ranger15 (Wright and Ziegler, 2017) directly
from github:

14 https://cran.r-project.org/package=gdistance
15 https://github.com/imbs-hl/ranger

https://cran.r-project.org/package=gdistance
https://github.com/imbs-hl/ranger
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if(!require(ranger)){ devtools::install_github("imbs-hl/ranger") }

Quantile regression random forest and derivation of standard errors using Jackknifing is available
from ranger version >0.9.4. Other packages that we use here include:

library(GSIF)
library(rgdal)
#> rgdal: version: 1.3-6, (SVN revision 773)
#> Geospatial Data Abstraction Library extensions to R successfully loaded
#> Loaded GDAL runtime: GDAL 2.2.2, released 2017/09/15
#> Path to GDAL shared files: /usr/share/gdal/2.2
#> GDAL binary built with GEOS: TRUE
#> Loaded PROJ.4 runtime: Rel. 4.8.0, 6 March 2012, [PJ_VERSION: 480]
#> Path to PROJ.4 shared files: (autodetected)
#> Linking to sp version: 1.3-1
library(raster)
library(geoR)
#> Warning: no DISPLAY variable so Tk is not available
#> --------------------------------------------------------------
#> Analysis of Geostatistical Data
#> For an Introduction to geoR go to http://www.leg.ufpr.br/geoR
#> geoR version 1.7-5.2.1 (built on 2016-05-02) is now loaded
#> --------------------------------------------------------------
library(ranger)

#>
#> Attaching package: 'gridExtra'
#> The following object is masked from 'package:randomForest':
#>
#> combine

If no other information is available, we can use buffer distances to all points as covariates to predict
values of some continuous or categorical variable in the RFsp framework. These can be derived
with the help of the raster16 package (Hijmans and van Etten, 2017). Consider for example the
meuse data set from the sp package:

demo(meuse, echo=FALSE)

We can derive buffer distance by using:

16 https://cran.r-project.org/package=raster

https://cran.r-project.org/package=raster
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grid.dist0 <- GSIF::buffer.dist(meuse["zinc"], meuse.grid[1], as.factor(1:nrow(meuse)))

which requires a few seconds, as it generates 155 individual gridded maps. The value of the target
variable zinc can be now modeled as a function of these computed buffer distances:

dn0 <- paste(names(grid.dist0), collapse="+")
fm0 <- as.formula(paste("zinc ~ ", dn0))
fm0
#> zinc ~ layer.1 + layer.2 + layer.3 + layer.4 + layer.5 + layer.6 +
#> layer.7 + layer.8 + layer.9 + layer.10 + layer.11 + layer.12 +
#> layer.13 + layer.14 + layer.15 + layer.16 + layer.17 + layer.18 +
#> layer.19 + layer.20 + layer.21 + layer.22 + layer.23 + layer.24 +
#> layer.25 + layer.26 + layer.27 + layer.28 + layer.29 + layer.30 +
#> layer.31 + layer.32 + layer.33 + layer.34 + layer.35 + layer.36 +
#> layer.37 + layer.38 + layer.39 + layer.40 + layer.41 + layer.42 +
#> layer.43 + layer.44 + layer.45 + layer.46 + layer.47 + layer.48 +
#> layer.49 + layer.50 + layer.51 + layer.52 + layer.53 + layer.54 +
#> layer.55 + layer.56 + layer.57 + layer.58 + layer.59 + layer.60 +
#> layer.61 + layer.62 + layer.63 + layer.64 + layer.65 + layer.66 +
#> layer.67 + layer.68 + layer.69 + layer.70 + layer.71 + layer.72 +
#> layer.73 + layer.74 + layer.75 + layer.76 + layer.77 + layer.78 +
#> layer.79 + layer.80 + layer.81 + layer.82 + layer.83 + layer.84 +
#> layer.85 + layer.86 + layer.87 + layer.88 + layer.89 + layer.90 +
#> layer.91 + layer.92 + layer.93 + layer.94 + layer.95 + layer.96 +
#> layer.97 + layer.98 + layer.99 + layer.100 + layer.101 +
#> layer.102 + layer.103 + layer.104 + layer.105 + layer.106 +
#> layer.107 + layer.108 + layer.109 + layer.110 + layer.111 +
#> layer.112 + layer.113 + layer.114 + layer.115 + layer.116 +
#> layer.117 + layer.118 + layer.119 + layer.120 + layer.121 +
#> layer.122 + layer.123 + layer.124 + layer.125 + layer.126 +
#> layer.127 + layer.128 + layer.129 + layer.130 + layer.131 +
#> layer.132 + layer.133 + layer.134 + layer.135 + layer.136 +
#> layer.137 + layer.138 + layer.139 + layer.140 + layer.141 +
#> layer.142 + layer.143 + layer.144 + layer.145 + layer.146 +
#> layer.147 + layer.148 + layer.149 + layer.150 + layer.151 +
#> layer.152 + layer.153 + layer.154 + layer.155

Subsequent analysis is similar to any regression analysis using the ranger package17. First we
overlay points and grids to create a regression matrix:

ov.zinc <- over(meuse["zinc"], grid.dist0)
rm.zinc <- cbind(meuse@data["zinc"], ov.zinc)

17 https://github.com/imbs-hl/ranger

https://github.com/imbs-hl/ranger
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to estimate also the prediction error variance i.e. prediction intervals we set quantreg=TRUE which
initiates the Quantile Regression RF approach (Meinshausen, 2006):

m.zinc <- ranger(fm0, rm.zinc, quantreg=TRUE, num.trees=150, seed=1)
m.zinc
#> Ranger result
#>
#> Call:
#> ranger(fm0, rm.zinc, quantreg = TRUE, num.trees = 150, seed = 1)
#>
#> Type: Regression
#> Number of trees: 150
#> Sample size: 155
#> Number of independent variables: 155
#> Mtry: 12
#> Target node size: 5
#> Variable importance mode: none
#> Splitrule: variance
#> OOB prediction error (MSE): 67501
#> R squared (OOB): 0.499

This shows that, using only buffer distance explains almost 50% of the variation in the target
variable. To generate predictions for the zinc variable and using the RFsp model, we use:

q <- c((1-.682)/2, 0.5, 1-(1-.682)/2)
zinc.rfd <- predict(m.zinc, grid.dist0@data,

type="quantiles", quantiles=q)$predictions
str(zinc.rfd)
#> num [1:3103, 1:3] 257 257 257 257 257 ...
#> - attr(*, "dimnames")=List of 2
#> ..$ : NULL
#> ..$ : chr [1:3] "quantile= 0.159" "quantile= 0.5" "quantile= 0.841"

this will estimate 67% probability lower and upper limits and median value. Note that “median”
can often be different from the “mean”, so, if you prefer to derive mean, then the quantreg=FALSE
needs to be used as the Quantile Regression Forests approach can only derive median.
To be able to plot or export the predicted values as maps, we add them to the spatial pixels object:

meuse.grid$zinc_rfd = zinc.rfd[,2]
meuse.grid$zinc_rfd_range = (zinc.rfd[,3]-zinc.rfd[,1])/2

We can compare the RFsp approach with the model-based geostatistics approach (see e.g. geoR
package18), where we first decide about the transformation, then fit the variogram of the target
variable (Diggle and Ribeiro Jr, 2007; Brown, 2015):
18 http://leg.ufpr.br/geoR/geoRdoc/geoRintro.html

http://leg.ufpr.br/geoR/geoRdoc/geoRintro.html
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zinc.geo <- as.geodata(meuse["zinc"])
ini.v <- c(var(log1p(zinc.geo$data)),500)
zinc.vgm <- likfit(zinc.geo, lambda=0, ini=ini.v, cov.model="exponential")
#> kappa not used for the exponential correlation function
#> ---------------------------------------------------------------
#> likfit: likelihood maximisation using the function optim.
#> likfit: Use control() to pass additional
#> arguments for the maximisation function.
#> For further details see documentation for optim.
#> likfit: It is highly advisable to run this function several
#> times with different initial values for the parameters.
#> likfit: WARNING: This step can be time demanding!
#> ---------------------------------------------------------------
#> likfit: end of numerical maximisation.
zinc.vgm
#> likfit: estimated model parameters:
#> beta tausq sigmasq phi
#> " 6.1553" " 0.0164" " 0.5928" "500.0001"
#> Practical Range with cor=0.05 for asymptotic range: 1498
#>
#> likfit: maximised log-likelihood = -1014

where likfit function fits a log-likelihood based variogram. Note that here we need to manually
specify log-transformation via the lambda parameter. To generate predictions and kriging variance
using geoR we run:

locs <- meuse.grid@coords
zinc.ok <- krige.conv(zinc.geo, locations=locs, krige=krige.control(obj.model=zinc.vgm))
#> krige.conv: model with constant mean
#> krige.conv: performing the Box-Cox data transformation
#> krige.conv: back-transforming the predicted mean and variance
#> krige.conv: Kriging performed using global neighbourhood
meuse.grid$zinc_ok <- zinc.ok$predict
meuse.grid$zinc_ok_range <- sqrt(zinc.ok$krige.var)

in this case geoR automatically back-transforms values to the original scale, which is a recom-
mended feature. Comparison of predictions and prediction error maps produced using geoR (or-
dinary kriging) and RFsp (with buffer distances and using just coordinates) is given in Fig. 6.13.
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Fig. 6.13 Comparison of predictions based on ordinary kriging as implemented in the geoR package (left) and
random forest (right) for Zinc concentrations, Meuse data set: (first row) predicted concentrations in log-scale
and (second row) standard deviation of the prediction errors for OK and RF methods. Image source: Hengl et
al. (2018) doi: 10.7717/peerj.5518.

From the plot above, it can be concluded that RFsp yields very similar results to those produced
using ordinary kriging via geoR. There are differences between geoR and RFsp, however. These
are:

• RF requires no transformation i.e. works equally well with skewed and normally distributed
variables; in general RF, requires fewer statistical assumptions than model-based geostatistics,

• RF prediction error variance on average shows somewhat stronger contrast than OK variance
map i.e. it emphasizes isolated, less probable, local points much more than geoR,

• RFsp is significantly more computationally demanding as distances need to be derived from
each sampling point to all new prediction locations,
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• geoR uses global model parameters and, as such, prediction patterns are also relatively uniform,
RFsp on the other hand (being tree-based) will produce patterns that match the data as much
as possible.

6.2.4 Spatial prediction 2D variable with covariates using RFsp

Next, we can also consider adding additional covariates that describe soil forming processes or
characteristics of the land to the list of buffer distances. For example, we can add covariates for
surface water occurrence (Pekel et al, 2016) and elevation (AHN19):

f1 = "extdata/Meuse_GlobalSurfaceWater_occurrence.tif"
f2 = "extdata/ahn.asc"
meuse.grid$SW_occurrence <- readGDAL(f1)$band1[meuse.grid@grid.index]
#> extdata/Meuse_GlobalSurfaceWater_occurrence.tif has GDAL driver GTiff
#> and has 104 rows and 78 columns
meuse.grid$AHN = readGDAL(f2)$band1[meuse.grid@grid.index]
#> extdata/ahn.asc has GDAL driver AAIGrid
#> and has 104 rows and 78 columns

to convert all covariates to numeric values and fill in all missing pixels we use Principal Component
transformation:

grids.spc <- GSIF::spc(meuse.grid, as.formula("~ SW_occurrence + AHN + ffreq + dist"))
#> Converting ffreq to indicators...
#> Converting covariates to principal components...

so that we can fit a ranger model using both geographical covariates (buffer distances) and envi-
ronmental covariates imported previously:

nms <- paste(names(grids.spc@predicted), collapse = "+")
fm1 <- as.formula(paste("zinc ~ ", dn0, " + ", nms))
fm1
#> zinc ~ layer.1 + layer.2 + layer.3 + layer.4 + layer.5 + layer.6 +
#> layer.7 + layer.8 + layer.9 + layer.10 + layer.11 + layer.12 +
#> layer.13 + layer.14 + layer.15 + layer.16 + layer.17 + layer.18 +
#> layer.19 + layer.20 + layer.21 + layer.22 + layer.23 + layer.24 +
#> layer.25 + layer.26 + layer.27 + layer.28 + layer.29 + layer.30 +
#> layer.31 + layer.32 + layer.33 + layer.34 + layer.35 + layer.36 +
#> layer.37 + layer.38 + layer.39 + layer.40 + layer.41 + layer.42 +
#> layer.43 + layer.44 + layer.45 + layer.46 + layer.47 + layer.48 +

19 http://ahn.nl

http://ahn.nl
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#> layer.49 + layer.50 + layer.51 + layer.52 + layer.53 + layer.54 +
#> layer.55 + layer.56 + layer.57 + layer.58 + layer.59 + layer.60 +
#> layer.61 + layer.62 + layer.63 + layer.64 + layer.65 + layer.66 +
#> layer.67 + layer.68 + layer.69 + layer.70 + layer.71 + layer.72 +
#> layer.73 + layer.74 + layer.75 + layer.76 + layer.77 + layer.78 +
#> layer.79 + layer.80 + layer.81 + layer.82 + layer.83 + layer.84 +
#> layer.85 + layer.86 + layer.87 + layer.88 + layer.89 + layer.90 +
#> layer.91 + layer.92 + layer.93 + layer.94 + layer.95 + layer.96 +
#> layer.97 + layer.98 + layer.99 + layer.100 + layer.101 +
#> layer.102 + layer.103 + layer.104 + layer.105 + layer.106 +
#> layer.107 + layer.108 + layer.109 + layer.110 + layer.111 +
#> layer.112 + layer.113 + layer.114 + layer.115 + layer.116 +
#> layer.117 + layer.118 + layer.119 + layer.120 + layer.121 +
#> layer.122 + layer.123 + layer.124 + layer.125 + layer.126 +
#> layer.127 + layer.128 + layer.129 + layer.130 + layer.131 +
#> layer.132 + layer.133 + layer.134 + layer.135 + layer.136 +
#> layer.137 + layer.138 + layer.139 + layer.140 + layer.141 +
#> layer.142 + layer.143 + layer.144 + layer.145 + layer.146 +
#> layer.147 + layer.148 + layer.149 + layer.150 + layer.151 +
#> layer.152 + layer.153 + layer.154 + layer.155 + PC1 + PC2 +
#> PC3 + PC4 + PC5 + PC6
ov.zinc1 <- over(meuse["zinc"], grids.spc@predicted)
rm.zinc1 <- do.call(cbind, list(meuse@data["zinc"], ov.zinc, ov.zinc1))

this finally gives:

m1.zinc <- ranger(fm1, rm.zinc1, importance="impurity",
quantreg=TRUE, num.trees=150, seed=1)

m1.zinc
#> Ranger result
#>
#> Call:
#> ranger(fm1, rm.zinc1, importance = "impurity", quantreg = TRUE, num.trees = 150, seed = 1)
#>
#> Type: Regression
#> Number of trees: 150
#> Sample size: 155
#> Number of independent variables: 161
#> Mtry: 12
#> Target node size: 5
#> Variable importance mode: impurity
#> Splitrule: variance
#> OOB prediction error (MSE): 56350
#> R squared (OOB): 0.582
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which demonstrates that there is a slight improvement relative to using only buffer distances as
covariates. We can further evaluate this model to see which specific points and covariates are most
important for spatial predictions:

xl <- as.list(ranger::importance(m1.zinc))
par(mfrow=c(1,1),oma=c(0.7,2,0,1), mar=c(4,3.5,1,0))
plot(vv <- t(data.frame(xl[order(unlist(xl), decreasing=TRUE)[10:1]])), 1:10,

type = "n", ylab = "", yaxt = "n", xlab = "Variable Importance (Node Impurity)",
cex.axis = .7, cex.lab = .7)

abline(h = 1:10, lty = "dotted", col = "grey60")
points(vv, 1:10)
axis(2, 1:10, labels = dimnames(vv)[[1]], las = 2, cex.axis = .7)
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Fig. 6.14 Variable importance plot for mapping zinc content based on the Meuse data set.

which shows, for example, that locations 54, 59 and 53 are the most influential points, and these
are almost equally as important as the environmental covariates (PC2–PC4).

This type of modeling can be best compared to using Universal Kriging or Regression-Kriging in
the geoR package:

zinc.geo$covariate = ov.zinc1
sic.t = ~ PC1 + PC2 + PC3 + PC4 + PC5
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zinc1.vgm <- likfit(zinc.geo, trend = sic.t, lambda=0,
ini=ini.v, cov.model="exponential")

#> kappa not used for the exponential correlation function
#> ---------------------------------------------------------------
#> likfit: likelihood maximisation using the function optim.
#> likfit: Use control() to pass additional
#> arguments for the maximisation function.
#> For further details see documentation for optim.
#> likfit: It is highly advisable to run this function several
#> times with different initial values for the parameters.
#> likfit: WARNING: This step can be time demanding!
#> ---------------------------------------------------------------
#> likfit: end of numerical maximisation.
zinc1.vgm
#> likfit: estimated model parameters:
#> beta0 beta1 beta2 beta3 beta4 beta5
#> " 5.6929" " -0.4351" " 0.0002" " -0.0791" " -0.0485" " -0.3725"
#> tausq sigmasq phi
#> " 0.0566" " 0.1992" "499.9990"
#> Practical Range with cor=0.05 for asymptotic range: 1498
#>
#> likfit: maximised log-likelihood = -980

this time geostatistical modeling produces an estimate of beta (regression coefficients) and vari-
ogram parameters (all estimated at once). Predictions using this Universal Kriging model can be
generated by:

KC = krige.control(trend.d = sic.t,
trend.l = ~ grids.spc@predicted$PC1 +

grids.spc@predicted$PC2 + grids.spc@predicted$PC3 +
grids.spc@predicted$PC4 + grids.spc@predicted$PC5,

obj.model = zinc1.vgm)
zinc.uk <- krige.conv(zinc.geo, locations=locs, krige=KC)
#> krige.conv: model with mean defined by covariates provided by the user
#> krige.conv: performing the Box-Cox data transformation
#> krige.conv: back-transforming the predicted mean and variance
#> krige.conv: Kriging performed using global neighbourhood
meuse.grid$zinc_UK = zinc.uk$predict
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Fig. 6.15 Comparison of predictions (median values) produced using random forest and covariates only (left),
and random forest with combined covariates and buffer distances (right).

again, overall predictions (the spatial patterns) look fairly similar (Fig. 6.15). The difference
between using geoR and RFsp is that, in the case of RFsp, there are fewer choices and fewer
assumptions required. Also, RFsp permits the relationship between covariates and geographical
distances to be fitted concurrently. This makes RFsp, in general, less cumbersome than model-
based geostatistics, but then also more of a “black-box” system to a geostatistician.

6.2.5 Spatial prediction of binomial variables

RFsp can also be used to predict (map the distribution of) binomial variables i.e. variables hav-
ing only two states (TRUE or FALSE). In the model-based geostatistics equivalent methods are
indicator kriging and similar. Consider for example soil type 1 from the meuse data set:

meuse@data = cbind(meuse@data, data.frame(model.matrix(~soil-1, meuse@data)))
summary(as.factor(meuse$soil1))
#> 0 1
#> 58 97

in this case class soil1 is the dominant soil type in the area. To produce a map of soil1 using RFsp
we have now two options:

• Option 1: treat the binomial variable as numeric variable with 0 / 1 values (thus a regression
problem),

• Option 2: treat the binomial variable as a factor variable with a single class (thus a classification
problem),



6.2 A generic framework for spatial prediction using Random Forest 267

In the case of Option 1, we model soil1 as:

fm.s1 <- as.formula(paste("soil1 ~ ", paste(names(grid.dist0), collapse="+"),
" + SW_occurrence + dist"))

rm.s1 <- do.call(cbind, list(meuse@data["soil1"],
over(meuse["soil1"], meuse.grid),
over(meuse["soil1"], grid.dist0)))

m1.s1 <- ranger(fm.s1, rm.s1, mtry=22, num.trees=150, seed=1, quantreg=TRUE)
m1.s1
#> Ranger result
#>
#> Call:
#> ranger(fm.s1, rm.s1, mtry = 22, num.trees = 150, seed = 1, quantreg = TRUE)
#>
#> Type: Regression
#> Number of trees: 150
#> Sample size: 155
#> Number of independent variables: 157
#> Mtry: 22
#> Target node size: 5
#> Variable importance mode: none
#> Splitrule: variance
#> OOB prediction error (MSE): 0.0579
#> R squared (OOB): 0.754

which results in a model that explains about 75% of variability in the soil1 values. We set
quantreg=TRUE so that we can also derive lower and upper prediction intervals following the quantile
regression random forest (Meinshausen, 2006).

In the case of Option 2, we treat the binomial variable as a factor variable:

fm.s1c <- as.formula(paste("soil1c ~ ",
paste(names(grid.dist0), collapse="+"),
" + SW_occurrence + dist"))

rm.s1$soil1c = as.factor(rm.s1$soil1)
m2.s1 <- ranger(fm.s1c, rm.s1, mtry=22, num.trees=150, seed=1,

probability=TRUE, keep.inbag=TRUE)
m2.s1
#> Ranger result
#>
#> Call:
#> ranger(fm.s1c, rm.s1, mtry = 22, num.trees = 150, seed = 1, probability = TRUE, keep.inbag = TRUE)
#>
#> Type: Probability estimation
#> Number of trees: 150
#> Sample size: 155
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#> Number of independent variables: 157
#> Mtry: 22
#> Target node size: 10
#> Variable importance mode: none
#> Splitrule: gini
#> OOB prediction error (Brier s.): 0.0586

which shows that the Out of Bag prediction error (classification error) is (only) 0.06 (in the
probability scale). Note that, it is not easy to compare the results of the regression and classification
OOB errors as these are conceptually different. Also note that we turn on keep.inbag = TRUE so that
ranger can estimate the classification errors using the Jackknife-after-Bootstrap method (Wager
et al, 2014). quantreg=TRUE obviously would not work here since it is a classification and not a
regression problem.

To produce predictions using the two options we use:

pred.regr <- predict(m1.s1, cbind(meuse.grid@data, grid.dist0@data), type="response")
pred.clas <- predict(m2.s1, cbind(meuse.grid@data, grid.dist0@data), type="se")

in principle, the two options to predicting the distribution of the binomial variable are mathe-
matically equivalent and should lead to the same predictions (also shown in the map below). In
practice, there can be some small differences in numbers, due to rounding effect or random start
effects.
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Fig. 6.16 Comparison of predictions for soil class “1” produced using (left) regression and prediction of the
median value, (middle) regression and prediction of response value, and (right) classification with probabilities.

This shows that predicting binomial variables using RFsp can be implemented both as a classifi-
cation and a regression problem and both are possible to implement using the ranger package and
both should lead to relatively the same results.
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6.2.6 Spatial prediction of soil types

Spatial prediction of a categorical variable using ranger is a form of classification problem. The
target variable contains multiple states (3 in this case), but the model still follows the same
formulation:

fm.s = as.formula(paste("soil ~ ", paste(names(grid.dist0), collapse="+"),
" + SW_occurrence + dist"))

fm.s
#> soil ~ layer.1 + layer.2 + layer.3 + layer.4 + layer.5 + layer.6 +
#> layer.7 + layer.8 + layer.9 + layer.10 + layer.11 + layer.12 +
#> layer.13 + layer.14 + layer.15 + layer.16 + layer.17 + layer.18 +
#> layer.19 + layer.20 + layer.21 + layer.22 + layer.23 + layer.24 +
#> layer.25 + layer.26 + layer.27 + layer.28 + layer.29 + layer.30 +
#> layer.31 + layer.32 + layer.33 + layer.34 + layer.35 + layer.36 +
#> layer.37 + layer.38 + layer.39 + layer.40 + layer.41 + layer.42 +
#> layer.43 + layer.44 + layer.45 + layer.46 + layer.47 + layer.48 +
#> layer.49 + layer.50 + layer.51 + layer.52 + layer.53 + layer.54 +
#> layer.55 + layer.56 + layer.57 + layer.58 + layer.59 + layer.60 +
#> layer.61 + layer.62 + layer.63 + layer.64 + layer.65 + layer.66 +
#> layer.67 + layer.68 + layer.69 + layer.70 + layer.71 + layer.72 +
#> layer.73 + layer.74 + layer.75 + layer.76 + layer.77 + layer.78 +
#> layer.79 + layer.80 + layer.81 + layer.82 + layer.83 + layer.84 +
#> layer.85 + layer.86 + layer.87 + layer.88 + layer.89 + layer.90 +
#> layer.91 + layer.92 + layer.93 + layer.94 + layer.95 + layer.96 +
#> layer.97 + layer.98 + layer.99 + layer.100 + layer.101 +
#> layer.102 + layer.103 + layer.104 + layer.105 + layer.106 +
#> layer.107 + layer.108 + layer.109 + layer.110 + layer.111 +
#> layer.112 + layer.113 + layer.114 + layer.115 + layer.116 +
#> layer.117 + layer.118 + layer.119 + layer.120 + layer.121 +
#> layer.122 + layer.123 + layer.124 + layer.125 + layer.126 +
#> layer.127 + layer.128 + layer.129 + layer.130 + layer.131 +
#> layer.132 + layer.133 + layer.134 + layer.135 + layer.136 +
#> layer.137 + layer.138 + layer.139 + layer.140 + layer.141 +
#> layer.142 + layer.143 + layer.144 + layer.145 + layer.146 +
#> layer.147 + layer.148 + layer.149 + layer.150 + layer.151 +
#> layer.152 + layer.153 + layer.154 + layer.155 + SW_occurrence +
#> dist

to produce probability maps per soil class, we need to turn on the probability=TRUE option:

rm.s <- do.call(cbind, list(meuse@data["soil"],
over(meuse["soil"], meuse.grid),
over(meuse["soil"], grid.dist0)))

m.s <- ranger(fm.s, rm.s, mtry=22, num.trees=150, seed=1,
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probability=TRUE, keep.inbag=TRUE)
m.s
#> Ranger result
#>
#> Call:
#> ranger(fm.s, rm.s, mtry = 22, num.trees = 150, seed = 1, probability = TRUE, keep.inbag = TRUE)
#>
#> Type: Probability estimation
#> Number of trees: 150
#> Sample size: 155
#> Number of independent variables: 157
#> Mtry: 22
#> Target node size: 10
#> Variable importance mode: none
#> Splitrule: gini
#> OOB prediction error (Brier s.): 0.0922

this shows that the model is successful with an OOB prediction error of about 0.09. This number
is rather abstract so we can also check the actual classification accuracy using hard classes:

m.s0 <- ranger(fm.s, rm.s, mtry=22, num.trees=150, seed=1)
m.s0
#> Ranger result
#>
#> Call:
#> ranger(fm.s, rm.s, mtry = 22, num.trees = 150, seed = 1)
#>
#> Type: Classification
#> Number of trees: 150
#> Sample size: 155
#> Number of independent variables: 157
#> Mtry: 22
#> Target node size: 1
#> Variable importance mode: none
#> Splitrule: gini
#> OOB prediction error: 10.32 %

which shows that the classification or mapping accuracy for hard classes is about 90%. We can
produce predictions of probabilities per class by running:

pred.soil_rfc = predict(m.s, cbind(meuse.grid@data, grid.dist0@data), type="se")
pred.grids = meuse.grid["soil"]
pred.grids@data = do.call(cbind, list(pred.grids@data,

data.frame(pred.soil_rfc$predictions),
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data.frame(pred.soil_rfc$se)))
names(pred.grids) = c("soil", paste0("pred_soil", 1:3), paste0("se_soil", 1:3))
str(pred.grids@data)
#> 'data.frame': 3103 obs. of 7 variables:
#> $ soil : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
#> $ pred_soil1: num 0.716 0.713 0.713 0.693 0.713 ...
#> $ pred_soil2: num 0.246 0.256 0.256 0.27 0.256 ...
#> $ pred_soil3: num 0.0374 0.0307 0.0307 0.0374 0.0307 ...
#> $ se_soil1 : num 0.1798 0.1684 0.1684 0.0903 0.1684 ...
#> $ se_soil2 : num 0.1446 0.0808 0.0808 0.0796 0.0808 ...
#> $ se_soil3 : num 0.0414 0.0413 0.0413 0.0414 0.0413 ...

where pred_soil1 is the probability of occurrence of class 1 and se_soil1 is the standard error of
prediction for the pred_soil1 based on the Jackknife-after-Bootstrap method (Wager et al, 2014).
The first column in pred.grids contains the existing map of soil with hard classes only.
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Fig. 6.17 Predictions of soil types for the meuse data set based on the RFsp: (above) probability for three soil
classes, and (below) derived standard errors per class.
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Spatial prediction of binomial and factor-type variables is straightforward with ranger / RFsp:
buffer distance and spatial-autocorrelation can be incorporated simultaneously as opposed to
geostatistical packages, where link functions and/or indicator kriging would need to be used, and
which require that variograms are fitted per class.

6.3 Summary points

In summary, MLA’s represent an increasingly attractive option for soil mapping and soil modelling
problems in general, as they often perform better than standard linear models (as previously
recognized by Moran and Bui (2002) and Henderson et al (2004)) Some recent comparisons of
MLA’s performance for operational soil mapping can be found in Nussbaum et al (2018)). MLA’s
often perform better than linear techniques for soil mapping; possibly for the following three
reasons:

1. Non-linear relationships between soil forming factors and soil properties can be more efficiently
modeled using MLA’s,

2. Tree-based MLA’s (random forest, gradient boosting, cubist) are suitable for representing local
soil-landscape relationships, nested within a hierarchy of larger areas, which is often important
for achieving accuracy of spatial prediction models,

3. In the case of MLA, statistical properties such as multicolinearity and non-Gaussian distribution
are dealt with inside the models, which simplifies statistical modeling steps,

On the other hand, MLA’s can be computationally very intensive and consequently require careful
planning, especially when the number of points goes beyond a few thousand and the number of
covariates beyond a dozen. Note also that some MLA’s, such as for example Support Vector
Machines (SVM), are computationally very intensive and are probably not well suited for very
large data sets.
Within PSM, there is increasing interest in doing ensemble predictions, model averages or model
stacks. Stacking models can improve upon individual best techniques, achieving improvements of
up to 30%, with the additional demands consisting of only higher computation loads (Michailidis,
2017). In the example above, the extensive computational load from derivation of models and
product predictions already achieved improved accuracies, making increasing computing loads
further a matter of diminishing returns. Some interesting Machine Learning Algorithms for soil
mapping based on regression include: Random Forest (Biau and Scornet, 2016), Gradient Boosting
Machine (GBM) (Hastie et al, 2009), Cubist (Kuhn et al, 2014), Generalized Boosted Regression
Models (Ridgeway, 2018), Support Vector Machines (Chang and Lin, 2011), and the Extreme
Gradient Boosting approach available via the xgboost package (Chen and Guestrin, 2016). None
of these techniques is universally recognized as the best spatial predictor for all soil variables.
Instead, we recommend comparing MLA’s using robust cross-validation methods as explained
above. Also combining MLA’s into ensemble predictions might not be beneficial in all situations.
Less is better sometimes.
The RFsp method seems to be suitable for generating spatial and spatiotemporal predictions.
Computing time, however, can be demanding and working with data sets with >1000 point lo-
cations (hence 1000+ buffer distance maps) is probably not yet feasible or recommended. Also
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cross-validation of accuracy of predictions produced using RFsp needs to be implemented using
leave-location-out CV to account for spatial autocorrelation in data. The key to the success of the
RFsp framework might be the training data quality — especially quality of spatial sampling (to
minimize extrapolation problems and any type of bias in data), and quality of model validation
(to ensure that accuracy is not effected by over-fitting). For all other details about RFsp refer to
Hengl et al (2018a).



Chapter 7

Spatial prediction and assessment of Soil Organic
Carbon

Edited by: Hengl T. & Sanderman J.

7.1 Introduction

This chapter was prepared as supplementary material for the Sanderman et al (2018) article. It
explains how to map Soil Organic Carbon Stocks (OCS) using soil samples (point data). It also
demonstrates derivation of values at both the site level (per profile) and by using raster calculus
(per pixel). We then illustrate how to estimate total OCS for any area of interest (which can be a
field plot, farm and/or administrative region). For an introduction to soil mapping using Machine
Learning Algorithms refer to chapter 6. To access the ISRIC global compilation of soil profiles
referenced here please refer to: http://www.isric.org/explore/wosis

7.2 Measurement and derivation of soil organic carbon

Carbon below ground can be organic or non-organic/ mineral (usually carbonates and bicarbon-
ates) i.e. CaCO3 in the rocks. Organic carbon stocks below ground (0–2 m) in terrestrial ecosystems
consist of two major components:

1. Living organism biomass i.e. mainly:

• Plant roots,
• Microbial biomass (Xu et al, 2013),

2. Plant and animal residues at various stages of decomposition (organic matter).

Xu et al (2013) estimated that total global microbial biomass is about 17 Pg C, which is only
about 2% of the total for organic matter. Therefore, the amounts of C in microbial biomass can
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reasonably be considered negligible, in comparison to the total C stock. However, if one includes
all living organisms, and especially tree roots, then the portion of total C found in living organisms
could be more significant, especially in areas under dense forests.

Soil Organic Carbon Stock (OCS) is the mass of soil organic carbon per standard area and for
a specific depth interval, usually expressed in kg/m2 or t/ha. It can be derived using (laboratory
and/or field) measurement of soil organic carbon content (ORC; expressed in % or g/kg of <2mm
mineral earth), then taking into account bulk density (BLD), thickness of the soil layer, and
volume percentage of coarse fragments (CRF) (Nelson and Sommers, 1982; Poeplau et al, 2017):

OCS[kg/m2] = ORC[%]/100 ⋅ BLD[kg/m3] ⋅ (1 − CRF[%]/100) ⋅ HOT[𝑚] (7.1)

Note that if one has soil organic carbon content measured in g/kg then one should divide by 1000
instead of 100. A correction for gravel content is necessary because only material less than 2 mm
is analyzed for ORC concentration. Ignoring the gravel content can result in an overestimation of
the organic carbon stock. Note also that OCS always refers to a specific depth interval or horizon
thickness (HOT), e.g.:

• kg/m2 for depth 0–30 cm (Berhongaray and Alvarez, 2013),

Values of OCS in kg/m2 can also be expressed in tons/ha units, in which case a simple conversion
formula can be applied:

1 ⋅ kg/m2 = 10 ⋅ tons/ha (7.2)

Total OCS for an area of interest can be derived by multiplying OCS by total area e.g.:

120tons/ha ⋅ 1km2 = 120 ⋅ 100 = 12, 000tons (7.3)

Another way to express soil organic carbon is through soil organic carbon density (OCD in
kg/m3), which is in fact equivalent to OCS divided by the horizon thickness:

OCD[kg/m3] = ORC[%]/100 ⋅ BLD[kg/m3] ⋅ (1 − CRF[%]/100) = OCS/HOT (7.4)

While OCS is a summary measure of SOC, always associated with a specific depth interval, OCD is
a relative measure of soil organic carbon distribution and can be associated with any support size
i.e. to an arbitrary depth. In principle, OCD (kg/m3) is strongly correlated with ORC (g/kg) as
indicated in the figure below. However, depending on soil mineralogy and coarse fragment content,
OCD can be lower or higher than what the smoothed line indicates (notice the range of values
around the smoothed line is relatively wide). It is important to understand, however, that, as long
as ORC, BLD and CRF are known, one can convert the values from ORC to OCD and OCS and
vice versa, without loosing any information about the soil organic carbon stock.
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Fig. 7.1 Correlation between soil organic carbon density and soil organic carbon content (displayed on a log-
scale) created using a global compilations of soil profile data (WoSIS). Values 1, 2, 3, 4, 5 and 6 in the plot (log
scale) correspond to values 2, 6, 19, 54, 147 and 402. Note that for ORC >12 percent, the OCD line flattens,
which means that, organic carbon density practically stops to increase with the increase of ORC content.

In summary, there are four main variables used to represent soil organic carbon:

1. Soil Organic Carbon fraction or content (ORC) in g/kg (permille) or dg/kg (percent),
2. Soil Organic Carbon Density (OCD) in kg/m3,
3. Soil Organic Carbon Stock (OCS) in kg/m2 or in tons/ha and for the given soil depth

interval,
4. Total Soil Organic Carbon Stock (TOCS) in million tonnes or Pg i.e. OCS multiplied by

surface area,

Global estimates of the total soil organic carbon stock are highly variable (Scharlemann et al,
2014). Current estimates of the present total soil organic carbon stock (excluding peatlands)
range between 800–2100 Pg C (for 0–100 cm), with a median estimate of about 1500 Pg C (for
0–100 cm). This means that the average OCS for the 0–100 cm depth interval for the global land
mask (148,940,000 km2) is about 11 kg/m2 or 110 tons/ha, and that average soil organic carbon
density (OCD) is about 11 kg/m3 (compare to the standard bulk density of fine earth of 1250
kg/m3); standard OCS for 0–30 cm depth interval is 7 kg/m2 i.e. the average OCD is about 13
kg/m3.

The average Organic Carbon Stock for the 0–100 cm depth interval (mineral soils) is about 11
kg/m2 or 110 tons/ha. The average soil Organic Carbon Density (OCD) is about 11 kg/m3 (com-
pared to the standard bulk density of fine earth of 1250 kg/m3). Standard Organic Carbon Stock
for 0–30 cm depth interval is 7 kg/m2 i.e. the average OCD is about 13 kg/m3.

The distribution of soil organic carbon in the world is, however, highly patchy with large areas
with OCS ≪ 100 tons/ha, and then some pockets of accumulated organic material i.e. organic
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Table 7.1 Laboratory data for a profile 399 EDGEROI ed079 from Australia (Karssies 2011).

upper_limit lower_limit carbon_content bulk_density CF SOCS
0 10 8.2 1340 6 1.1

10 20 7.5 1367 6 1.0
20 55 6.1 1382 7 3.0
55 90 3.3 1433 8 1.7
90 116 1.6 1465 8 0.6

soil types (histosols) with OCS up to 850tons/ha (for 0–30 cm depth interval). The world’s soil
organic matter accumulation areas are usually found in the following biomes / land cover classes:
wetlands and peatlands, mangroves, tundras and taigas.

Land use and agriculture, in particular, have led to dramatic decreases in soil carbon stocks in
last 200+ years (agricultural and industrial revolutions). Lal (2004) estimated that approximately
54 Pg C have been added to the atmosphere due to agricultural activities with another 26 Pg
C being lost from soils due to erosion. Wei et al (2014) estimated that, on average, conversion
from forests to various agricultural land results in a 30–50% decrease in SOCS. Modelling and
monitoring of soil organic carbon dynamics is therefore of increasing importance (see e.g. FAO
report “Unlocking the Potential of Soil Organic Carbon”1).

7.3 Derivation of OCS and OCD using soil profile data

As mentioned previously, OCS stock is most commonly derived from measurements of the organic
carbon (ORC) content, soil bulk density (BLD) and the volume fraction of gravel (CRF). These
are usually sampled either per soil layers or soil horizons (a sequence of horizons makes a soil
profile), which can refer to variable soil depth intervals i.e. are non-standard. That means that,
before one can determine OCS for standard fixed depth intervals (e.g. 0–30 cm or 0–100 cm),
values of ORC, BLD and CRF need to be standardized so they refer to common depth intervals.

Consider, for example, the following two real life examples of soil profile data for a standard
agricultural soil and an organic soil. For example the profile from Australia2 (Karssies, 2011), which
is shown in Tbl. 7.1. Note the original soil profile description / laboratory data indicates that no
BLD were recorded for this profile. In the absence of measured field BLD we can substitute BLD
estimated using LandGIS data. It (unfortunately) commonly happens that soil profile observations
lack BLD measurements, and consequently BLD needs to be generated using a Pedo-Transfer
function or estimated from soil maps.

To determine OCS for standard depth intervals 0–30, 0–100 and 0–200 cm, we first fit a mass-
preserving spline (Malone et al, 2009):

library(GSIF)
#> GSIF version 0.5-5 (2019-01-04)

1 http://www.fao.org/documents/card/en/c/25eaf720-94e4-4f53-8f50-cdfc2487e1f8/
2 http://www.asris.csiro.au/mapping/hyperdocs/NatSoil/399%5EEDGEROI%5Eed079.pdf

http://www.fao.org/documents/card/en/c/25eaf720-94e4-4f53-8f50-cdfc2487e1f8/
http://www.asris.csiro.au/mapping/hyperdocs/NatSoil/399%5EEDGEROI%5Eed079.pdf
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#> URL: http://gsif.r-forge.r-project.org/
library(aqp)
#> This is aqp 1.17
#>
#> Attaching package: 'aqp'
#> The following object is masked from 'package:base':
#>
#> union
library(sp)
library(plyr)
library(viridis)
#> Loading required package: viridisLite
lon = 149.73; lat = -30.09;
id = "399_EDGEROI_ed079"; TIMESTRR = "1987-01-05"
top = c(0, 10, 20, 55, 90)
bottom = c(10, 20, 55, 90, 116)
ORC = c(8.2, 7.5, 6.1, 3.3, 1.6)
BLD = c(1340, 1367, 1382, 1433, 1465)
CRF = c(6, 6, 7, 8, 8)
#OCS = OCSKGM(ORC, BLD, CRF, HSIZE=bottom-top)
prof1 <- join(data.frame(id, top, bottom, ORC, BLD, CRF),

data.frame(id, lon, lat, TIMESTRR), type='inner')
#> Joining by: id
depths(prof1) <- id ~ top + bottom
#> Warning: converting IDs from factor to character
site(prof1) <- ~ lon + lat + TIMESTRR
coordinates(prof1) <- ~ lon + lat
proj4string(prof1) <- CRS("+proj=longlat +datum=WGS84")
ORC.s <- mpspline(prof1, var.name="ORC", d=t(c(0,30,100,200)), vhigh = 2200)
#> Fitting mass preserving splines per profile...
#>
|
| | 0%
|
|=================================================================| 100%

BLD.s <- mpspline(prof1, var.name="BLD", d=t(c(0,30,100,200)), vhigh = 2200)
#> Fitting mass preserving splines per profile...
#>
|
| | 0%
|
|=================================================================| 100%

CRF.s <- mpspline(prof1, var.name="CRF", d=t(c(0,30,100,200)), vhigh = 2200)
#> Fitting mass preserving splines per profile...
#>
|
| | 0%
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|
|=================================================================| 100%

now we can derive OCS for top-soil by using:

OCSKGM(ORC.s$var.std$`0-30 cm`,
BLD.s$var.std$`0-30 cm`,
CRF.s$var.std$`0-30 cm`, HSIZE=30)

#> [1] 2.88
#> attr(,"measurementError")
#> [1] 3.84
#> attr(,"units")
#> [1] "kilograms per square-meter"

and for sub-soil using:

OCSKGM(ORC.s$var.std$`30-100 cm`,
BLD.s$var.std$`30-100 cm`,
CRF.s$var.std$`30-100 cm`, HSIZE=70)

#> [1] 3.62
#> attr(,"measurementError")
#> [1] 9.18
#> attr(,"units")
#> [1] "kilograms per square-meter"

Note that the OCSKGM function requires soil organic carbon content in g/kg. If one has contents
measured in % then first multiply the values by 10. Bulk density data should be provided in kg/m3,
gravel content in %, and layer depth in cm. Running the OCSKGM function for the Edgeroi profile
gives the following estimates of OCS for standard depth intervals (Fig. 7.2):

• 0–30 cm: 2.9 kg / m-square

• 0–100 cm: 6.5 kg / m-square

• 0–200 cm: 8.5 kg / m-square (85 tonnes / ha)

Values of OCS between 5–35 kg/m2 for 0–100 cm are commonly reported for a variety of mineral
soils with e.g. 1–3% of soil organic carbon.

Organic Carbon Stock for standard depths can be determined from legacy soil profile data either
by fitting a spline function to organic carbon, bulk density values, or by aggregating data using
simple conversion formulas. A standard mineral soil with 1–3% soil organic carbon for the 0–100
cm depth interval should have about 5–35 kg/m2 or 50–350 tonnes/ha. An organic soil with >30%
soil organic carbon may have as much as 60–90 kg/m2 for the 0–100 cm depth interval.
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Table 7.2 Laboratory data for an organic soil profile from Canada (Shaw, Bhatti, and Sabourin 2005).

upper_limit lower_limit carbon_content bulk_density CF SOCS
0 31 472 185 5 25.7

31 61 492 172 6 23.9
61 91 487 175 6 24.1
91 122 502 166 6 24.3

122 130 59 830 6 3.7

The measurement error is computed from default uncertainty values (expressed in standard devi-
ations) for organic carbon (10 g/kg), bulk density (100 kg/m3) and coarse fraction content (5%).
When these are not provided by the user, the outcome should be interpreted with care.

 

 

Fig. 7.2 Determination of soil organic carbon density and stock for standard depth intervals: example of a
mineral soil profile from Australia.

In the second example we look at a profile from Canada (a histosol with >40% of organic carbon;
Shaw et al (2005)) which is shown in Tbl. 7.2.

Here also BLD values were not provided and so had to be estimated. To estimate BLD, we use a
simple Pedo-Transfer rule e.g. from Köchy et al (2015):

BLD.f = (−0.31 ⋅ 𝑙𝑜𝑔(ORC/10) + 1.38) ⋅ 1000 (7.5)

We divide the organic carbon content here by 10 to convert the organic carbon content from g/kg
to % as required by the PTF. Note that one might want to use different PTFs for different soil
layers. For mineral soils the bulk density of subsoil layers is often somewhat higher than for topsoil
layers. For organic soils this typically is the inverse. For instance, Köchy et al (2015) propose the
following PTF for the subsoil (for layers with SOC > 3%):

BLD = −0.32 ⋅ 𝑙𝑜𝑔(ORC[%]) + 1.38 (7.6)
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which gives slightly lower bulk density values. Another useful source for PTFs for organic soils is
work by Hossain et al (2015). For illustrative purposes, we have here used only one PTF for all
soil layers.
We can again fit mass-preserving splines and determine OCS for standard depth intervals by using
the functions applied to profile 1. This ultimately gives the following estimates (Fig. 7.3):

• 0–30 cm: 24.8 kg / m-square
• 0–100 cm: 75.3 kg / m-square
• 0–200 cm: 114.5 kg / m-square (1145 tonnes / ha)

 

 

Fig. 7.3 Determination of soil organic carbon density and stock for standard depth intervals: example of an
organic soil profile from Canada.

Only 3–4% of the total soil profiles in the world have organic carbon content above 8% (soils
with ORC >12% are classified as organic soils or histosols in USDA and/or WRB classifications
and are even less frequent), hence soil-depth functions of organic carbon content and derivation
of OCS for organic soils are specific for patches of organic soils. On the other hand, organic soils
carry much more total OCS. Precise processing and mapping of organic soils is, therefore, often
crucial for accurate estimation of total OCS for large areas. Therefore, it is fairly important to use
a good PTF to fill in missing values for BLD for organic soils. As a rule of thumb, organic soil will
rarely exhibit a density greater than some minimum value e.g. 120 kg/m3 because even though
SOC content can be >50%, bulk density of such soil gets proportionally lower and bulk density
is physically bound with how material is organized in soil (unless soils is artificially compacted).
Also, using correct estimates for coarse fragments is important as otherwise, if CRF is ignored,
total stock will be over-estimated (Poeplau et al, 2017).
A somewhat more straightforward way to estimate OCS for a list of soil profiles vs spline fitting
is:

1. Fill in bulk densities using some PTF or global data,
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2. Use information about the depth to bedrock to correct for shallow soils,
3. Use information on CRF to correct stocks for stony / skeletoidal component,
4. Aggregate non-standard horizon depth values using some simple rules (Fig. 7.4).
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Fig. 7.4 Estimation of OCS values 0–30 cm using some typical soil profile data without fitting splines.
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7.4 Estimation of Bulk Density using a globally-calibrated PTF

Where values for bulk density are missing, and no local PTF exists, WoSIS points (global compi-
lation of soil profiles) can be used to fit a PTF that can fill-in gaps in bulk density measurements
globally. A regression matrix extracted on 15th of May 2017 (and which contains harmonized
values for BD, organic carbon content, pH, sand and clay content, depth of horizon and USDA
soil type at some 20,000 soil profiles world-wide), can be fitted using a random forest model (see
also Ramcharan et al (2017)):

dfs_tbl = readRDS("extdata/wosis_tbl.rds")
ind.tax = readRDS("extdata/ov_taxousda.rds")
library(ranger)
fm.BLD = as.formula(
paste("BLD ~ ORCDRC + CLYPPT + SNDPPT + PHIHOX + DEPTH.f +",

paste(names(ind.tax), collapse="+")))
m.BLD_PTF <- ranger(fm.BLD, dfs_tbl, num.trees = 85, importance='impurity')
#> Growing trees.. Progress: 85%. Estimated remaining time: 5 seconds.
m.BLD_PTF
#> Ranger result
#>
#> Call:
#> ranger(fm.BLD, dfs_tbl, num.trees = 85, importance = "impurity")
#>
#> Type: Regression
#> Number of trees: 85
#> Sample size: 98650
#> Number of independent variables: 70
#> Mtry: 8
#> Target node size: 5
#> Variable importance mode: impurity
#> Splitrule: variance
#> OOB prediction error (MSE): 32379
#> R squared (OOB): 0.549

This shows somewhat lower accuracy i.e. an RMSE of ±180 kg/m3 (R squared (OOB) = 0.54),
but is still probably preferable to completely excluding all observations without bulk density from
SOC assessment. A disadvantage of this model is that, in order to predict BD for new locations,
we need to also have measurements of texture fractions, pH and organic carbon of course. For
example, an Udalf with 1.1% organic carbon, 22% clay, pH of 6.5, sand content of 35% and at
depth of 5 cm would result in an estimate for bulk density of:

ind.tax.new = ind.tax[which(ind.tax$TAXOUSDA84==1)[1],]
predict(m.BLD_PTF, cbind(data.frame(ORCDRC=11,

CLYPPT=22,
PHIHOX=6.5,
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SNDPPT=35,
DEPTH.f=5), ind.tax.new))$predictions

#> [1] 1526

Note also that the PTF above needs USDA suborder values per point location following the
LandGIS legend for USDA suborders, and formatted as in the ind.tax object. Unfortunately, the
model above probably over-estimates bulk density for organic soils as these are usually under-
represented i.e. often not available (consider for example a Saprist with 32% organic carbon):

ind.tax.new = ind.tax[which(ind.tax$TAXOUSDA13==1)[1],]
predict(m.BLD_PTF,

cbind(data.frame(ORCDRC=320, CLYPPT=8, PHIHOX=5.5,
SNDPPT=45, DEPTH.f=10), ind.tax.new))$predictions

#> [1] 773

An alternative to estimating BLD is to just use ORC values, e.g. (see plot below):

m.BLD_ls = loess(BLD ~ ORCDRC, dfs_tbl, span=1/18)
predict(m.BLD_ls, data.frame(ORCDRC=320))
#> 1
#> 664

This gives about 30% lower value than the random forest-based PTF from above. Over-estimating
BLD will always result in higher OCS, hence clearly accurate information on BLD can be crucial
for any OCS monitoring project. This means that the PTF fitted using random forest above is
likely over-estimating BLD values for organic soils, mainly because there are not enough training
points in organic soils that have measurements data for all of ORC, BLD, soil pH and texture
fractions (if ANY of the calibration measurements are missing, the whole horizons are taken out
of calibration and hence different ranges of BLD could be completely misrepresented).

Soil Bulk density (BLD) is an important soil property that is required to estimate stocks of
nutrients especially soil organic carbon. Measurements of BLD are often not available and need
to be estimated using some PTF or similar. Most PTF’s for BLD are based on correlating BLD
with soil organic carbon, clay and sand content, pH, soil type and climate zone.
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Fig. 7.5 Correlation plot between soil organic carbon density and bulk density (fine earth), created using the
global compilations of soil profile data (http://www.isric.org/content/wosis-data-sets). Black line indicates fitted
loess polynomial surface (stats::loess). There is still quite some scatter around the fitted line: many combinations
of BLD and ORC, that do not fall close to the correlation line, can still be observed.

To fill-in missing values for BLD, a combination of two global Pedo-Transfer functions can be used
for example: (1) PTF fitted using random forest model that locally predicts BLD as a function of
organic carbon content, clay and sand content, pH and coarse fragments, and (2) a simpler model
that predicts BLD based on only ORC. The average RMSE of these PTFs for BLD is about ±150
kg/m3.

For mineral soils the relationship between soil organic carbon and soil depth follows a log-log
relationship which can be also approximated with the following (global) model (R-square: 0.36;
see Fig. 7.6):

𝑂𝑅𝐶(𝑑𝑒𝑝𝑡ℎ) = 𝑒𝑥𝑝[4.1517 − 0.60934 ⋅ 𝑙𝑜𝑔(𝑑𝑒𝑝𝑡ℎ)] (7.7)

This also illustrates that any organic carbon spatial prediction model can significantly profit from
including depth in the statistical modelling.
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Fig. 7.6 Globally fitted regression model for predicting soil organic carbon using depth only (log-log regression)
and (a) individual soil profile from the ISRIC soil monolith collection. Image source: Hengl et al. (2014) doi:
10.1371/journal.pone.0105992.

In summary, PTFs can be used to efficiently estimate missing BLD values (BLD is usually highly
correlated with organic carbon content and depth, texture fractions, soil classification and soil
pH can also help improve accuracy of the PTFs). However, for organic soils there is, in general,
less calibration data and therefore errors are potentially higher. Mistakes in estimating BLD can
result in systematic and significant over/under-estimations of the actual carbon stock. On the other
hand, removing all soil horizons from OCS assessment that lack BLD measurements leads also to
reduced accuracy as fewer points are then available for training of the spatial prediction models.
Especially for organic soils (>12% organic carbon), there is no easy solution for estimating missing
values for BLD. Collecting additional (local) calibration points might become unavoidable. Lobsey
and Viscarra Rossel (2016) recently proposed a method that combines gamma-ray attenuation and
visible–near infrared (vis–NIR) spectroscopy to measure bulk density ex situ using samples that are
freshly collected under wet field conditions. Hopefully unreliable, or missing, BLD measurements
will become less of a problem in the future.

7.5 Generating maps of OCS

Most projects focused on monitoring OCS require an estimate of OCS to be provided for the
entire area of interest, so that users can visually explore spatial patterns of OCS. In this tutorial
we demonstrate how to generate maps of OCS using point samples and RS based covariates. The
output of this process is usually a gridded map (SpatialPixelsDataFrame) covering the entire area of
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interest (plot, farm, administrative unit or similar). Once OCS is mapped, we can multiply OCS
densities by the area of each pixel and summing up all numbers we can compute the total OCS in
total tonnes using the formula above. Predicted OCS values can also be aggregated per land cover
class or similar. If a series of OCS maps is produced for the same area of interest (time-series of
OCS), these can then be used to derive OCS change through time per pixel.

In principle, there are three main approaches to estimating total OCS for an area of interest (Fig.
7.7):

• By directly predicting OCS, here called the the 2D approach to OCS mapping (this often
requires vertical aggregation / modeling of soil variable depth curves as indicated above),

• By predicting ORC, BLD and CRF, and then deriving OCS per layer, here called the 3D
approach to OCS mapping with ORC, BLD and CRF mapped separately,

• By deriving OCD (organic carbon density) and then directly predicting OCD and converting
it to OCS, here called the 3D approach to OCS mapping via direct modeling of OCD,

Soil Organic Carbon stock can be mapped by using at least three different approaches: (1) the
2D approach where estimation of OCS is done at the site level, (2) the 3D approach where soil
organic carbon content, bulk density and coarse fragments are mapped separately, then used to
derive OCS for standard depths at each grid cell, and (3) the 3D approach based on mapping
Organic Carbon Density, then converting to stocks.

 

 

Fig. 7.7 Three main computational paths (2D and 3D) to producing maps of organic carbon stock.

Although 2D prediction of OCS from point data seems to be more straightforward, many soil
profiles contain measurements at non-standard depth intervals (varying support sizes also) and
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therefore 2D modeling of OCS can often be a cumbersome. In most situations where legacy soil
profile data are used, 3D modeling of OCD is probably the most elegant solution to mapping OCS
because:

• No vertical aggregation of values via spline fitting or similar is needed to standardize values
per standard depths,

• No additional uncertainty is introduced (in the case of the 2D approach splines likely introduce
some extra uncertainty in the model),

• Predictions of OCD/OCS can be generated for any depth interval using the same model (i.e. pre-
dictions are based on a single 3D model),

A disadvantage of doing 3D modeling of OCD is, however, that correlation with covariate layers
could be less clear than if separate models are built for ORC, BLD and CRF. Because OCD is a
composite variable, it can often be difficult to distinguish whether the values are lower or higher
due to differences in ORC, BLD or CRF. We leave it to users to compare various approaches to
OCS mapping and then select the method that achieves the best accuracy and/or is most suitable
for use for their applications.

7.6 Predicting OCS from point data (the 2D approach)

The geospt package3 contains 125 samples of OCS from Colombia already at standard depth
intervals, hence this data set is suitable and ready for 2D mapping of OCS. The data set consists
of tabular values for points and a raster map containing the borders of the study area:

load("extdata/COSha10.rda")
load("extdata/COSha30.rda")
str(COSha30)
#> 'data.frame': 118 obs. of 10 variables:
#> $ ID : Factor w/ 118 levels "S1","S10","S100",..: 1 44 61 89 100 110 2 9 15 21 ...
#> $ x : int 669030 669330 670292 669709 671321 670881 670548 671340 671082 670862 ...
#> $ y : int 448722 448734 448697 448952 448700 448699 448700 448969 448966 448968 ...
#> $ DA30 : num 1.65 1.6 1.5 1.32 1.41 1.39 1.51 1.39 1.55 1.63 ...
#> $ CO30 : num 0.99 1.33 1.33 1.09 1.04 1.19 1.21 1.36 1.09 1.19 ...
#> $ COB1r : Factor w/ 6 levels "Az","Ci","Cpf",..: 5 5 2 5 2 5 2 2 2 5 ...
#> $ S_UDS : Factor w/ 19 levels "BJa1","BQa1",..: 12 5 12 5 11 12 12 12 12 12 ...
#> $ COSha30 : num 49.2 64 59.8 43.1 44.2 ...
#> $ Cor4DAidep: num 43.3 56.3 54 37.9 39.9 ...
#> $ CorT : num 1.37 1.39 1.38 1.36 1.36 ...

where COSha10 = 0–10 cm, COSha30 = 0–30 cm in tons / ha are values for OCS aggregated to standard
soil depth intervals, so there is no need to do any spline fitting and/or vertical aggregation. We
can also load the raster map for the area by using (Fig. 7.8):
3 https://cran.r-project.org/package=geospt

https://cran.r-project.org/package=geospt
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load("extdata/COSha30map.rda")
proj4string(COSha30map) = "+proj=utm +zone=18 +ellps=WGS84 +datum=WGS84 +units=m +no_defs"
str(COSha30map@data)
#> 'data.frame': 10000 obs. of 2 variables:
#> $ var1.pred: num 39.9 39.8 39.9 40.3 40.7 ...
#> $ var1.var : num 1.91e-05 6.39e-05 1.05e-04 1.39e-04 1.66e-04 ...

which shows predictions and kriging variances for COSha30.

 

 

Fig. 7.8 Example of a data set with OCS samples (for 2D prediction). Case study in Colombia available via
the geospt package (https://cran.r-project.org/package=geospt).

We can import a number of RS-based covariates into R by (these were derived from the global 30
m layers listed previously):
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covs30m = readRDS("extdata/covs30m.rds")
proj4string(covs30m) = proj4string(COSha30map)
names(covs30m)
#> [1] "SRTMGL1_SRTMGL1.2_cprof"
#> [2] "SRTMGL1_SRTMGL1.2_devmean"
#> [3] "SRTMGL1_SRTMGL1.2_openn"
#> [4] "SRTMGL1_SRTMGL1.2_openp"
#> [5] "SRTMGL1_SRTMGL1.2_slope"
#> [6] "SRTMGL1_SRTMGL1.2_twi"
#> [7] "SRTMGL1_SRTMGL1.2_vbf"
#> [8] "SRTMGL1_SRTMGL1.2_vdepth"
#> [9] "SRTMGL1_SRTMGL1.2"
#> [10] "COSha30map_var1pred_"
#> [11] "GlobalForestChange2000.2014_first_NIRL00"
#> [12] "GlobalForestChange2000.2014_first_REDL00"
#> [13] "GlobalForestChange2000.2014_first_SW1L00"
#> [14] "GlobalForestChange2000.2014_first_SW2L00"
#> [15] "GlobalForestChange2000.2014_treecover2000"
#> [16] "GlobalSurfaceWater_extent"
#> [17] "GlobalSurfaceWater_occurrence"
#> [18] "Landsat_bare2010"

This contains a number of covariates from SRTM DEM derivatives, to Global Surface Water
occurrence values and similar (see section 4.1.2 for more details). All these could potentially prove
useful for mapping OCS. We can also derive buffer distances from observations points and use
these (as measures of spatial context) to improve predictions (Hengl et al, 2018a):

proj4string(COSha30map) = "+proj=utm +zone=18 +ellps=WGS84 +datum=WGS84 +units=m +no_defs"
coordinates(COSha30) = ~ x+y
proj4string(COSha30) = proj4string(COSha30map)
covs30mdist = GSIF::buffer.dist(COSha30["COSha30"], covs30m[1],

as.factor(1:nrow(COSha30)))

We can convert the original covariates to Principal Components, also to fill in all missing pixels:

covs30m@data = cbind(covs30m@data, covs30mdist@data)
sel.rm = c("GlobalSurfaceWater_occurrence", "GlobalSurfaceWater_extent",

"Landsat_bare2010", "COSha30map_var1pred_")
rr = which(names(covs30m@data) %in% sel.rm)
fm.spc = as.formula(paste(" ~ ", paste(names(covs30m)[-rr], collapse = "+")))
proj4string(covs30m) = proj4string(COSha30)
covs30m.spc = GSIF::spc(covs30m, fm.spc)
#> Converting covariates to principal components...
ov.COSha30 = cbind(as.data.frame(COSha30), over(COSha30, covs30m.spc@predicted))
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By using the above listed covariates, we can fit a spatial prediction 2D model using an available
model, such as ranger4 (Wright and Ziegler, 2017), xgboost5 and/or gamboost6:

library(caret)
#> Loading required package: lattice
#> Loading required package: ggplot2
library(ranger)
fm.COSha30 = as.formula(paste("COSha30 ~ ",

paste(names(covs30m.spc@predicted), collapse = "+")))
fm.COSha30
#> COSha30 ~ PC1 + PC2 + PC3 + PC4 + PC5 + PC6 + PC7 + PC8 + PC9 +
#> PC10 + PC11 + PC12 + PC13 + PC14 + PC15 + PC16 + PC17 + PC18 +
#> PC19 + PC20 + PC21 + PC22 + PC23 + PC24 + PC25 + PC26 + PC27 +
#> PC28 + PC29 + PC30 + PC31 + PC32 + PC33 + PC34 + PC35 + PC36 +
#> PC37 + PC38 + PC39 + PC40 + PC41 + PC42 + PC43 + PC44 + PC45 +
#> PC46 + PC47 + PC48 + PC49 + PC50 + PC51 + PC52 + PC53 + PC54 +
#> PC55 + PC56 + PC57 + PC58 + PC59 + PC60 + PC61 + PC62 + PC63 +
#> PC64 + PC65 + PC66 + PC67 + PC68 + PC69 + PC70 + PC71 + PC72 +
#> PC73 + PC74 + PC75 + PC76 + PC77 + PC78 + PC79 + PC80 + PC81 +
#> PC82 + PC83 + PC84 + PC85 + PC86 + PC87 + PC88 + PC89 + PC90 +
#> PC91 + PC92 + PC93 + PC94 + PC95 + PC96 + PC97 + PC98 + PC99 +
#> PC100 + PC101 + PC102 + PC103 + PC104 + PC105 + PC106 + PC107 +
#> PC108 + PC109 + PC110 + PC111 + PC112 + PC113 + PC114 + PC115 +
#> PC116 + PC117 + PC118 + PC119 + PC120 + PC121 + PC122 + PC123 +
#> PC124 + PC125 + PC126 + PC127 + PC128 + PC129 + PC130 + PC131 +
#> PC132
rf.tuneGrid <- expand.grid(.mtry = seq(2, 60, by=5),

.splitrule = "maxstat",

.min.node.size = c(10, 20))
gb.tuneGrid <- expand.grid(eta = c(0.3,0.4),

nrounds = c(50,100),
max_depth = 2:3, gamma = 0,
colsample_bytree = 0.8,
min_child_weight = 1, subsample=1)

fitControl <- trainControl(method="repeatedcv", number=4, repeats=1)
mFit1 <- train(fm.COSha30, data=ov.COSha30, method="ranger",

trControl=fitControl, importance='impurity',
tuneGrid=rf.tuneGrid)

mFit1
#> Random Forest
#>
#> 118 samples
#> 132 predictors

4 https://cran.r-project.org/package=ranger
5 https://cran.r-project.org/package=xgboost
6 https://cran.r-project.org/package=GAMBoost

https://cran.r-project.org/package=ranger
https://cran.r-project.org/package=xgboost
https://cran.r-project.org/package=GAMBoost
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#>
#> No pre-processing
#> Resampling: Cross-Validated (4 fold, repeated 1 times)
#> Summary of sample sizes: 87, 88, 89, 90
#> Resampling results across tuning parameters:
#>
#> mtry min.node.size RMSE Rsquared MAE
#> 2 10 11.0 0.0225 8.75
#> 2 20 11.0 0.0450 8.69
#> 7 10 11.0 0.0442 8.66
#> 7 20 11.0 0.0442 8.68
#> 12 10 11.0 0.0608 8.61
#> 12 20 10.9 0.0588 8.62
#> 17 10 11.0 0.0519 8.65
#> 17 20 11.0 0.0583 8.60
#> 22 10 10.9 0.0684 8.59
#> 22 20 10.9 0.0699 8.59
#> 27 10 10.9 0.0710 8.57
#> 27 20 10.9 0.0737 8.57
#> 32 10 10.9 0.0836 8.55
#> 32 20 10.9 0.0836 8.56
#> 37 10 10.9 0.0887 8.63
#> 37 20 10.9 0.0739 8.57
#> 42 10 10.9 0.0606 8.64
#> 42 20 10.8 0.0930 8.50
#> 47 10 10.9 0.0731 8.58
#> 47 20 10.9 0.0753 8.60
#> 52 10 10.9 0.0848 8.55
#> 52 20 10.9 0.0849 8.53
#> 57 10 10.9 0.0748 8.61
#> 57 20 10.9 0.0772 8.61
#>
#> Tuning parameter 'splitrule' was held constant at a value of maxstat
#> RMSE was used to select the optimal model using the smallest value.
#> The final values used for the model were mtry = 42, splitrule =
#> maxstat and min.node.size = 20.
mFit2 <- train(fm.COSha30, data=ov.COSha30, method="xgbTree",

trControl=fitControl, tuneGrid=gb.tuneGrid)
mFit2
#> eXtreme Gradient Boosting
#>
#> 118 samples
#> 132 predictors
#>
#> No pre-processing
#> Resampling: Cross-Validated (4 fold, repeated 1 times)
#> Summary of sample sizes: 87, 89, 89, 89
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#> Resampling results across tuning parameters:
#>
#> eta max_depth nrounds RMSE Rsquared MAE
#> 0.3 2 50 11.9 0.0547 9.20
#> 0.3 2 100 11.9 0.0558 9.22
#> 0.3 3 50 11.6 0.0305 9.14
#> 0.3 3 100 11.6 0.0305 9.14
#> 0.4 2 50 12.0 0.0443 9.60
#> 0.4 2 100 12.0 0.0439 9.60
#> 0.4 3 50 11.5 0.0776 9.19
#> 0.4 3 100 11.5 0.0777 9.19
#>
#> Tuning parameter 'gamma' was held constant at a value of 0
#> 0.8
#> Tuning parameter 'min_child_weight' was held constant at a value of
#> 1
#> Tuning parameter 'subsample' was held constant at a value of 1
#> RMSE was used to select the optimal model using the smallest value.
#> The final values used for the model were nrounds = 100, max_depth = 3,
#> eta = 0.4, gamma = 0, colsample_bytree = 0.8, min_child_weight = 1
#> and subsample = 1.

This example illustrates that no significant spatial prediction models (with an R-square exceeding
10%) can be fitted using these data. It is very common in soil mapping projects for models to
explain only low amounts of the total variation, resulting in large average errors of prediction
and/or wide prediction intervals. This can occur because of high measurement errors, and/or
because there are missing covariates, but it could also happen because the natural complexity of
soils in the area is simply high.

Note that the absolute values of our predictions of OCS are somewhat different than those pro-
duced by the geospt package7 authors, although the main patterns are comparable.
7 https://cran.r-project.org/package=geospt

https://cran.r-project.org/package=geospt


296 7 Spatial prediction and assessment of Soil Organic Carbon

 

+ + +
+

+++
+++ +++++

+ + + + + +
+

+ + + + +

+
++

+
+

+
+

+
++++

+

++++

+

+

+++
+

+ +
+

+ +

+

++

+ + + +
++++

+ + + +
++++

+
+
++++

+
++

+ +

+++++

+ +

+
+ + +

+
+

+ +

+
+

+++
++

+

+++

+
+

++
+

+

+

COSha30map_var1pred_

+ + +
+

+++
+++ +++++

+ + + + + +
+

+ + + + +

+
++

+
+

+
+

+
++++

+

++++

+

+

+++
+

+ +
+

+ +

+

++

+ + + +
++++

+ + + +
++++

+
+
++++

+
++

+ +

+++++

+ +

+
+ + +

+
+

+ +

+
+

+++
++

+

+++

+
+

++
+

+

+

COSha30map_RF

30

40

50

60

70

80

 

Fig. 7.9 Comparison of predictions generated using ordinary kriging (left) and machine learning with the help
of 30 m resolution covariates and buffer distances (right).

We can compare the difference between mean predicted OCS and measured OCS:

mean(COSha30.pr$COSha30map_RF, na.rm=TRUE); mean(COSha30$COSha30, na.rm=TRUE)
#> [1] 48.6
#> [1] 50.6
## 48 tonnes/ha vs 51 tonnes / ha

and derive the total SOC in tonnes:

sum(COSha30.pr$COSha30map_RF*30^2/1e4, na.rm=TRUE)
#> [1] 102089

7.7 Deriving OCS from soil profile data (the 3D approach)

In the following example, we will demonstrate, using a well known data set, (Edgeroi8, from
Australia) which has been well documented in the literature (Malone et al, 2009), how to derive
OCS in t/ha using soil profile data and a 3D approach to spatial prediction based on mapping
the Organic Carbon Density (OCD) in kg/m-cubic. The Edgeroi data set is a typical example of
a soil profile data set that is relatively comprehensive, but still missing BLD measurements.
8 http://gsif.r-forge.r-project.org/edgeroi.html

http://gsif.r-forge.r-project.org/edgeroi.html
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Fig. 7.10 Edgeroi data set: locations of soil profiles and Australian soil classification codes. For more details
see Malone et al. (2009).

The Edgeroi data set can be loaded from the GSIF package:

library(GSIF)
data(edgeroi)
edgeroi.sp = edgeroi$sites
coordinates(edgeroi.sp) <- ~ LONGDA94 + LATGDA94
proj4string(edgeroi.sp) <- CRS("+proj=longlat +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +no_defs")
edgeroi.sp <- spTransform(edgeroi.sp, CRS("+init=epsg:28355"))

This data set comes with a list of covariate layers which can be used to model the distribution of
soil organic carbon:

load("extdata/edgeroi.grids.rda")
gridded(edgeroi.grids) <- ~x+y
proj4string(edgeroi.grids) <- CRS("+init=epsg:28355")
names(edgeroi.grids)
#> [1] "DEMSRT5" "TWISRT5" "PMTGEO5" "EV1MOD5" "EV2MOD5" "EV3MOD5"

Because some of the covariate layers are factors e.g. PMTGEO5 (parent material map) and because
random forest requires numeric covariates, we can convert factors to numeric PCs by using:
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edgeroi.spc = spc(edgeroi.grids, ~DEMSRT5+TWISRT5+PMTGEO5+EV1MOD5+EV2MOD5+EV3MOD5)
#> Converting PMTGEO5 to indicators...
#> Converting covariates to principal components...

The Edgeroi completely lacks any BLD values, therefore before we can compute OCD values, we
need to estimate BLD values for each corresponding horizon. Here the easiest option is probably
to use BLD values sourced from LandGIS predictions (and which you can download from https:
//landgis.opengeohub.org).

landgis.bld = list.files("/mnt/DATA/LandGIS/predicted250m",
pattern=glob2rx("sol_bulkdens.fineearth_usda.4a1h_m_*.tif$"),
full.names=TRUE)

for(j in 1:length(landgis.bld)){
system(paste0('gdalwarp ', landgis.bld[j], ' extdata/edgeroi_',

basename(landgis.bld[j]), ' -t_srs \"', proj4string(edgeroi.grids),
'\" -tr 250 250 -co \"COMPRESS=DEFLATE\"',
' -te ', paste(as.vector(edgeroi.grids@bbox), collapse = " ")))

}

Matching between the irregularly distributed soil horizons and LandGIS bulk density at standard
depths can be implemented in three steps. First, we overlay the points and LandGIS GeoTIFFs
to get the BLD values in kg / cubic-m at standard depths:

sg <- list.files("extdata", "edgeroi_sol_bulkdens.fineearth", full.names = TRUE)
ov <- as.data.frame(raster::extract(stack(sg), edgeroi.sp)*10)
ov.edgeroi.BLD = ov[,c(grep("b0..", names(ov),

fixed = TRUE), grep("b10..", names(ov), fixed = TRUE),
grep("b30..", names(ov),

fixed = TRUE), grep("b60..", names(ov), fixed = TRUE),
grep("b100..", names(ov),

fixed = TRUE), grep("b200..", names(ov), fixed = TRUE))]

Second, we derive averaged estimates of BLD for standard depth intervals:

ov.edgeroi.BLDm <- data.frame(BLD.f = as.vector(sapply(2:ncol(ov.edgeroi.BLD),
function(i){rowMeans(ov.edgeroi.BLD[,c(i-1,i)])})),

DEPTH.c = as.vector(sapply(1:5, function(i){rep(paste0("sd",i),
nrow(edgeroi$sites))})), SOURCEID = rep(edgeroi$sites$SOURCEID, 5))

str(ov.edgeroi.BLDm)
#> 'data.frame': 1795 obs. of 3 variables:
#> $ BLD.f : num 1370 1335 1310 1500 1490 ...
#> $ DEPTH.c : Factor w/ 5 levels "sd1","sd2","sd3",..: 1 1 1 1 1 1 1 1 1 1 ...
#> $ SOURCEID: Factor w/ 359 levels "199_CAN_CP111_1",..: 1 2 3 4 5 6 7 8 9 10 ...

https://landgis.opengeohub.org
https://landgis.opengeohub.org
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Third, we match BLD values by matching horizon depths (center of horizon) with the standard
depth intervals sd1 to sd5:

edgeroi$horizons$DEPTH = edgeroi$horizons$UHDICM +
(edgeroi$horizons$LHDICM - edgeroi$horizons$UHDICM)/2

edgeroi$horizons$DEPTH.c = cut(edgeroi$horizons$DEPTH, include.lowest = TRUE,
breaks = c(0,10,30,60,100,1000), labels = paste0("sd",1:5))

summary(edgeroi$horizons$DEPTH.c)
#> sd1 sd2 sd3 sd4 sd5
#> 391 379 408 391 769
edgeroi$horizons$BLD.f = plyr::join(edgeroi$horizons[,c("SOURCEID","DEPTH.c")],

ov.edgeroi.BLDm)$BLD.f
#> Joining by: SOURCEID, DEPTH.c

which shows relatively equal distribution of soil horizons within the standard depths. Now that
we have a rough estimate of the bulk density for all horizons, we can derive OCD in kg/m-cubic
by using:

edgeroi$horizons$OCD = edgeroi$horizons$ORCDRC/1000 * edgeroi$horizons$BLD.f
summary(edgeroi$horizons$OCD)
#> Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
#> 0.1 2.4 7.2 9.5 13.2 124.9 262

This shows that OCD values range from 0–110 kg/m-cubic, with an average of 9.5 kg/m-cubic
(this corresponds to an average organic carbon content of about 0.8%).

For further 3D spatial prediction of OCD we use the ranger package, which fits a random forest
model to this 3D data. We start by overlaying points and rasters so that we can create a regression
matrix:

ov2 <- over(edgeroi.sp, edgeroi.spc@predicted)
ov2$SOURCEID = edgeroi.sp$SOURCEID
h2 = hor2xyd(edgeroi$horizons)
m2 <- plyr::join_all(dfs = list(edgeroi$sites, h2, ov2))
#> Joining by: SOURCEID
#> Joining by: SOURCEID

The spatial prediction model can be fitted using:

fm.OCD = as.formula(paste0("OCD ~ DEPTH + ", paste(names(edgeroi.spc@predicted),
collapse = "+")))

fm.OCD
#> OCD ~ DEPTH + PC1 + PC2 + PC3 + PC4 + PC5 + PC6 + PC7 + PC8 +
#> PC9 + PC10 + PC11 + PC12
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m.OCD <- ranger(fm.OCD, m2[complete.cases(m2[,all.vars(fm.OCD)]),],
quantreg = TRUE, importance = "impurity")

m.OCD
#> Ranger result
#>
#> Call:
#> ranger(fm.OCD, m2[complete.cases(m2[, all.vars(fm.OCD)]), ], quantreg = TRUE, importance = "impurity")
#>
#> Type: Regression
#> Number of trees: 500
#> Sample size: 4972
#> Number of independent variables: 13
#> Mtry: 3
#> Target node size: 5
#> Variable importance mode: impurity
#> Splitrule: variance
#> OOB prediction error (MSE): 18.4
#> R squared (OOB): 0.697

Which shows that the average error with Out-of-bag training points is ±4.2 kg/m-cubic. Note that
setting quantreg = TRUE allows us to derive also a map of the prediction errors (Fig. 7.11), following
the method of Meinshausen (2006).

To derive OCS in tons/ha we can compute OCD at two depths (0 and 30 cm) and then take the
mean value to produce a more representative value:

for(i in c(0,30)){
edgeroi.spc@predicted$DEPTH = i
OCD.rf <- predict(m.OCD, edgeroi.spc@predicted@data)
nm1 = paste0("OCD.", i, "cm")
edgeroi.grids@data[,nm1] = OCD.rf$predictions
OCD.qrf <- predict(m.OCD, edgeroi.spc@predicted@data,

type="quantiles", quantiles=c((1-.682)/2, 1-(1-.682)/2))
nm2 = paste0("OCD.", i, "cm_se")
edgeroi.grids@data[,nm2] = (OCD.qrf$predictions[,2] - OCD.qrf$predictions[,1])/2

}

so that the final Organic carbon stocks in t/ha is:

#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 20.3 39.1 48.0 48.8 57.6 112.1
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Fig. 7.11 Predicted organic carbon stock for 0–30 cm depth for the Edgeroi data set. All values expressed in
tons/ha.
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Fig. 7.12 The prediction error map for the Edgeroi data set.

Note that deriving the error map in the ranger package can be computationally intensive, especially
if the number of covariates is high, and is therefore not yet recommended for large rasters.

Next, we can derive the total soil organic carbon stock per land use class9 (2007). For this we can
use the aggregation function from the plyr package:

library(rgdal)
#> rgdal: version: 1.3-6, (SVN revision 773)
#> Geospatial Data Abstraction Library extensions to R successfully loaded

9 http://data.environment.nsw.gov.au/dataset/nsw-landuseac11c

http://data.environment.nsw.gov.au/dataset/nsw-landuseac11c
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#> Loaded GDAL runtime: GDAL 2.2.2, released 2017/09/15
#> Path to GDAL shared files: /usr/share/gdal/2.2
#> GDAL binary built with GEOS: TRUE
#> Loaded PROJ.4 runtime: Rel. 4.8.0, 6 March 2012, [PJ_VERSION: 480]
#> Path to PROJ.4 shared files: (autodetected)
#> Linking to sp version: 1.3-1
edgeroi.grids$LandUse = readGDAL("extdata/edgeroi_LandUse.sdat")$band1
#> extdata/edgeroi_LandUse.sdat has GDAL driver SAGA
#> and has 128 rows and 190 columns
lu.leg = read.csv("extdata/LandUse.csv")
edgeroi.grids$LandUseClass = paste(join(data.frame(LandUse=edgeroi.grids$LandUse),

lu.leg, match="first")$LU_NSWDeta)
#> Joining by: LandUse
OCS_agg.lu <- plyr::ddply(edgeroi.grids@data, .(LandUseClass), summarize,

Total_OCS_kt=round(sum(OCS.30cm*250^2/1e4, na.rm=TRUE)/1e3),
Area_km2=round(sum(!is.na(OCS.30cm))*250^2/1e6))

OCS_agg.lu$LandUseClass.f = strtrim(OCS_agg.lu$LandUseClass, 34)
OCS_agg.lu$OCH_t_ha_M = round(OCS_agg.lu$Total_OCS_kt*1000/(OCS_agg.lu$Area_km2*100))
OCS_agg.lu[OCS_agg.lu$Area_km2>5,c("LandUseClass.f","Total_OCS_kt",

"Area_km2","OCH_t_ha_M")]
#> LandUseClass.f Total_OCS_kt Area_km2 OCH_t_ha_M
#> 2 Constructed grass waterway for wat 57 11 52
#> 3 Cotton 43 8 54
#> 4 Cotton - irrigated 808 203 40
#> 5 Cropping - continuous or rotation 1803 402 45
#> 6 Cropping - continuous or rotation 234 59 40
#> 10 Farm dam 55 10 55
#> 11 Farm Infrastructure - house, machi 91 18 51
#> 12 Grazing - Residual strips (block o 49 10 49
#> 13 Grazing of native vegetation. Graz 688 129 53
#> 14 Grazing of native vegetation. Graz 65 13 50
#> 16 Irrigation dam 63 16 39
#> 21 Native forest 229 37 62
#> 26 Research facility 40 9 44
#> 27 River, creek or other incised drai 70 11 64
#> 28 Road or road reserve 118 23 51
#> 29 State forest 425 83 51
#> 32 Volunteer, naturalised, native or 1411 238 59
#> 33 Volunteer, naturalised, native or 62 16 39
#> 34 Volunteer, naturalised, native or 77 14 55
#> 35 Volunteer, naturalised, native or 475 99 48
#> 37 Wide road reserve or TSR, with som 467 90 52

Which shows that, for the Cropping - continuous or rotation, which is the dominant land use class in
the area, the average OCS is 43 tons/ha for the 0–30 cm depth. In this case, the total soil organic
carbon stock for the whole area (for all land use classes) is ca 7154 thousand tons of C. There do
not appear to be large differences in OCS between the natural vegetation and croplands.
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7.8 Deriving OCS using spatiotemporal models

Assuming that measurements of ORC have also been referenced temporally (at least to the year of
sampling), point data can be used to build spatiotemporal models of soil organic carbon. Consider,
for example, the soil profile data available for the conterminous USA:

OCD_stN <- readRDS("extdata/usa48.OCD_spacetime_matrix.rds")
dim(OCD_stN)
#> [1] 250428 134

This data shows that there are actually sufficient observations spread through time (last 60+
years) to fit a spatiotemporal model:

hist(OCD_stN$YEAR, xlab="Year", main="", col="darkgrey", cex.axis = .7, cex.main = .7, cex.lab = .7)
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Fig. 7.13 Distribution of soil observations based on sampling year.

In fact, because the data set above represents values of OCD at variable depths, we can use this
data to fit a full 3D+T spatiotemporal model in the form:
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OCD(𝑥𝑦𝑑𝑡) = 𝑑 + 𝑋1(𝑥𝑦) + … + 𝑋𝑘(𝑥𝑦) + … + 𝑋𝑝(𝑥𝑦𝑡) (7.8)

where 𝑑 is the depth, 𝑋𝑘(𝑥𝑦) are static covariates i.e. the covariates that do not change in time,
and 𝑋𝑝(𝑥𝑦𝑡) are spatiotemporal covariates i.e. covariates that change with time. Here we can
assume that the static covariates are mainly landform and lithology: these have probably not
changed significantly in the last 100 years. Land cover, land use and climate, on the other hand,
have probably changed drastically in the last 100 years and have to be represented with a time-
series of images. There are, indeed, several time-series data sets now available that can be used to
represent land cover dynamics:

• HYDE 3.2 Historic land use data set10 (Klein Goldewijk et al, 2011): portrays the distribution of
major agricultural systems from 10,000 BC (pre-historic no land-use condition) to the present
time. 10 categories of land use have been represented: total cropping, total grazing, pasture
(improved grazing-land), rangeland (unimproved grazing-land), total rainfed cropping, total
irrigated cropping, with further subdivisions for rice and non-rice cropping systems for both
rainfed and irrigated cropping.

• CRU TS2.1 climatic surfaces11 for period 1960–1990 (Harris et al, 2014).

• UNEP-WCMC Generalized Original and Current Forest cover map12 showing global dynamics
of forest cover.

All these layers are available only at a relatively coarse resolution of 10 km, but then cover longer
time spans. Note also that, since these are time-series images, spatiotemporal overlay can take
time as spatial overlay must be repeated for each time period. The spatiotemporal matrix file
already contains the results of overlay, so that we can focus directly on building spatiotemporal
models of OCD e.g.:

pr.lst <- names(OCD_stN)[-which(names(OCD_stN) %in% c("SOURCEID", "DEPTH.f", "OCDENS",
"YEAR", "YEAR_c", "LONWGS84",
"LATWGS84"))]

fm0.st <- as.formula(paste('OCDENS ~ DEPTH.f + ', paste(pr.lst, collapse="+")))
sel0.m = complete.cases(OCD_stN[,all.vars(fm0.st)])
## takes >2 mins
rf0.OCD_st <- ranger(fm0.st, data=OCD_stN[sel0.m,all.vars(fm0.st)],

importance="impurity", write.forest=TRUE, num.trees=120)

the most important covariates being:

xl <- as.list(ranger::importance(rf0.OCD_st))
print(t(data.frame(xl[order(unlist(xl), decreasing=TRUE)[1:10]])))

10 ftp://ftp.pbl.nl/hyde/hyde3.2/
11 http://www.ipcc-data.org/observ/clim/
12 http://www.unep-wcmc.org/resources-and-data/generalised-original-and-current-forest

ftp://ftp.pbl.nl/hyde/hyde3.2/
http://www.ipcc-data.org/observ/clim/
http://www.unep-wcmc.org/resources-and-data/generalised-original-and-current-forest
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which shows that the most important soil covariate by far is soil depth, followed by elevation,
grazing, MODIS cloud fraction images, cropland and similar. For a full description of codes please
refer to Sanderman et al (2018).

Finally, based on this model, we can generate predictions for 3–4 specific time periods and for
some arbitrary depth e.g. 10 cm. The maps below clearly show that ca 8% of soil organic carbon
has been lost in the last 90 years, most likely due to increases in grazing and croplands. The maps
also show, however, that some areas in the northern latitudes are experiencing an increase in SOC,
possibly due to higher rainfall i.e. based on the CRU data set.

 

 

Fig. 7.14 Predicted OCD (in kg/cubic-m) at 10 cm depth for the year 2014. Blue colors indicate low values,
red high values.

 

 

Fig. 7.15 Predicted OCD (in kg/cubic-m) at 10 cm depth for the year 1925.
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This demonstrates that, as long as there is enough training data spread through time, and as long
as covariates are available for the corresponding time ranges, machine learning can also be used to
fit full 3D+T spatiotemporal prediction models (Gasch et al, 2015). Once we produce a time-series
of images for some target soil variable of interest, the next step would be to implement time-series
analysis methods to e.g. detect temporal trends and areas of highest apparent soil degradation.
An R package that is fairly useful for such analysis is the greenbrown13 package, primarily used
to map and quantify degradation of land cover (Forkel et al, 2015).

We can focus on the time-series of predicted organic carbon density for USA48:

library(greenbrown)
library(raster)
setwd()
tif.lst <- list.files("extdata/USA48", pattern="_10km.tif", full.names = TRUE)
g10km <- as(readGDAL(tif.lst[1]), "SpatialPixelsDataFrame")
for(i in 2:length(tif.lst)){ g10km@data[,i] = readGDAL(tif.lst[i],

silent=TRUE)$band1[g10km@grid.index] }
names(g10km) = basename(tif.lst)
g10km = as.data.frame(g10km)
gridded(g10km) = ~x+y
proj4string(g10km) = "+proj=longlat +datum=WGS84"

to speed up processing we can subset grids and focus on the State of Texas:

library(maps)
library(maptools)
states <- map('state', plot=FALSE, fill=TRUE)
states = SpatialPolygonsDataFrame(map2SpatialPolygons(states,

IDs=1:length(states$names)),
data.frame(names=states$names))

proj4string(states) = "+proj=longlat +datum=WGS84"
ov.g10km = over(y=states, x=g10km)
txg10km = g10km[which(ov.g10km$names=="texas"),]
txg10km = as.data.frame(txg10km)
gridded(txg10km) = ~x+y
proj4string(txg10km) = "+proj=longlat +datum=WGS84"
spplot(log1p(stack(txg10km)), col.regions=SAGA_pal[[1]])
g10km.b = raster::brick(txg10km)

13 http://greenbrown.r-forge.r-project.org/

http://greenbrown.r-forge.r-project.org/
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Fig. 7.16 Time-series of predictions of organic carbon density for Texas.

We can analyze this time-series data to see where the decrease in organic carbon is most significant,
for example the slope of the change:

trendmap <- TrendRaster(g10km.b, start=c(1935, 1), freq=1, breaks=1)
## can be computationally intensive
plot(trendmap[["SlopeSEG1"]],

col=rev(SAGA_pal[["SG_COLORS_GREEN_GREY_RED"]]),
zlim=c(-1.5,1.5), main="Slope SEG1")
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Fig. 7.17 Predicted slope of change of soil organic carbon density for Texas for the period 1935–2014. Negative
values indicate loss of soil organic carbon.

which shows that loss of soil organic carbon is especially distinct in the southern part of Texas. The
slope coefficient map is, on average, negative, which indicates that most of the state has lost organic
carbon for the period of interest. Note that running such time-series analysis is not trivial as a
sufficient number of observations in time (if possible: repetitions) is needed to be able to extract
significant patterns. Also TrendRaster function can be quite computationally intensive, hence some
careful planning of the processing steps / processing infrastructure is usually recommended.

7.9 Summary points

Based on all the examples and discussion above, the following key points can be emphasized:

1. OCS for an area of interest can be derived either using 2D or 3D approaches. 3D approaches
typically include modeling ORC, BLD and CRF separately (and then deriving OCS per pixel),
or modeling OCD for standard depths and then converting to OCS.

2. Publicly available RS-based covariates (SRTM / ALOS DEM, Landsat, Sentinel satellites) are
available for improving the mapping accuracy of OCS. Improving the accuracy of OCS maps is
becoming less expensive, given the increasing availability of RS data.

3. PT (Pedo-Transfer) rules can be used to fill in (estimate) missing BLD values and to estimate
ORC for deeper soil depths. Also global maps with predictions of BLD and CRF can be used
to supply missing values, if there are no other alternatives.

4. Machine learning techniques such as Random Forest, neural nets, gradient boosting and sim-
ilar, can be used to predict soil organic carbon in 2D, 3D and in spatiotemporal modeling
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frameworks. The accuracy of these predictions is improved relative to linear statistical models,
especially where the relationship between soil organic carbon distribution and climatic, land
cover, hydrological, relief and similar covariates is complex (i.e. non-linear).

5. Global estimates of ORC, BLD and CRF can be used as covariates so that consistent predictions
can be produced (as explained in Ramcharan et al (2018)).

6. By producing spatial predictions of OCS for specific time periods, one can derive estimates of
OCS change (loss or gain).

7. Most of the statistical / analytical tools required for running spatial analysis, time series anal-
ysis, export and visualization of soil carbon data are available in R, especially thanks to the
contributed packages: aqp, caret, ranger, xgboost, GSIF, greenbrown and similar.

8. Accurate measurements of bulk density (BLD) by horizon or depth interval for described soil
profiles are critical for producing accurate calculations of soil carbon stock. Unfortunately,
BLD data are often missing or not reported for many legacy soil profile descriptions and are
frequently unreliable even when reported. Future efforts to sample and describe soil profiles
should emphasise the collection and publication of accurate measurements of BLD by horizon
or depth interval for all described soil profiles.





Chapter 8

Practical tips for organizing Predictive Soil Mapping

Edited by: T. Hengl, R. A. MacMillan and I. Wheeler

8.1 Critical aspects of Predictive Soil Mapping

Previous chapters in this book have reviewed many of the technical aspects of PSM. For a statisti-
cian, following the right procedures and applying the right statistical frameworks will are the key
elements of success for a PSM project. In practice, it is really a combination of all elements and
aspects that determines a success of a PSM project. In this chapter we provide some practical tips
on how to organize work and what to be especially careful about. We refer to these as the critical
aspects of PSM projects.

At the end of the chapter we also try to present additional practical tips in the form of check-lists
and simple economic analysis, to help readers avoid making unrealistic plans or producing maps
that may not find effective use.

8.1.1 PSM main steps

Based on previously presented theory, we can summarize the usual PSM processes as:

1. Preparation of point data (training data).

2. Preparation of covariate data (the explanatory variables).

3. Model fitting and validation (building rules by overlay, model fitting and cross-validation).

4. Prediction and generation of (currently best-possible) final maps (applying the rules).

5. Archiving and distribution of maps (usually via soil geographical databases and/or web ser-
vices).

6. Updates and improvements (support).

311
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Fig. 8.1 General decision tree in a Predictive Soil Mapping project.

An even more comprehensive list of steps in PSM projects is given in Fig. 8.1, which also includes
market/user-domain researcher and might be also used for soil monitoring projects.

In principle, we recognize three main types of PSM projects:

A. PSM projects in new, previously unmapped, areas — no point observations or samples currently
exist.
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B. PSM projects using legacy points — sufficient point data to support PSM exist and are available,
but no previous PSM modelling has been implemented for this area.

C. PSM projects aimed at optimizing predictions and usability — Previous PSM models have
already been completed but previous results can still be improved / optimized.

If point data are not available, then collecting new point data, via field work and laboratory
analysis will usually consume a majority of any PSM project budget (PSM projects type A).
Otherwise, if point data are already available (and only need to be imported and harmonized),
the most time consuming part of PSM will likely be preparation of covariate data layers (PSM
projects type B). Predictions can also take a long time and computing costs per update can be
significant (see further sections). Personnel costs can be more significant than server costs as
programming can require weeks of staff time. However, if programming is done at a high level
(e.g. through generic functions and objects), subsequent updates should require less personnel
time as predictions can be increasingly automated.

Another aspect of PSM is the time dimension i.e. will maps be continuously updated or do they
need to produced only once and then remain relevant and useful for years (often up to decades),
so that PSM projects can also be classified into:

I. PSM projects for the purpose of mapping static (stable) spatial patterns only.

II. PSM projects for the purpose of one-time change detection (e.g. two time intervals).

III. PSM projects for the purpose of monitoring soil conditions / status (continuous updates at
regular intervals).

To date, almost all conventional soil mapping ignores time and change and instead tries to assume
that soil properties are static and persist through time virtually unaltered. Increasingly, however,
new generation PSM projects aim to monitor changes in soil resources, with special focus given to
changes in soil organic carbon, soil nutrients, soil moisture and similar (Fig. 8.2). For PSM project
type III spatio-temporal prediction models can be used (as in meteorology for example), but then
this requires that sufficient training data are available in both the space and time domains e.g. at
least five measurement intervals / repetitions.
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Fig. 8.2 Types of PSM projects depending on whether maps are generated for single usage, or for detecting
change or soil monitoring.

8.1.2 PSM input and output spatial data layers

In PSM, there are, in principle, three (3) main types of spatial input layers (Hengl et al, 2017a):

1. Soil samples (usually points or transects) are spatially incomplete. They are used as evidence
in generating spatial predictions. In vertical and horizontal dimensions, soil points might refer
to volumes i.e. have a block support. Often only the horizontal (2D) support is mentioned, and
the 3D support has to be inferred from the description of the depth slice(s) sampled.

2. Soil mask i.e.a raster map delineating the spatial domain of interest for PSM. Commonly derived
from a land cover map with water bodies, permanent ice and similar removed from predictions.

3. Covariates i.e. grid maps that depict environmental conditions. Ideally all covariates are
“stacked” to exactly match the same grid and all missing values and inconsistencies are re-
solved prior to PSM.

And three (3) main types of spatial output layers:
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4. Spatial predictions of (primary) soil variables that are spatially complete i.e. are produced and
available for the entire extent of the soil mask.

5. Maps of (secondary) soil variables which are derived using calculations applied to combinations
of the primary predicted soil variables. These are usually less expensive to produce, by an order
of magnitude, than spatial predictions of primary soil variables.

6. Maps quantifying uncertainty in terms of prediction error, prediction interval, confusion index
or similar metrics. These may be derived at the same time as predictions are made or can be
made completely independently of predictions.

Each element of the map types listed above needs to have a consistent spatio-temporal reference,
which typically includes:

• Geographic location in local or geographic coordinates (for global modelling we usually prefer
initial georeferencing that uses longitude and latitude in the WGS84 coordinate system);

• Depth interval expressed in cm from the land surface (upper and lower depth) for layers and
point depth for point predictions;

• Support size or referent soil volume (or voxel) i.e. the horizontal sampling area multiplied by
the thickness of the sampling block e.g. 30 × 30 × 0.3 m.

• Temporal reference i.e. a begin and an end date/time of the period of measure-
ments/estimations. Specifying exact spatial and temporal references in the metadata
can is vital for optimal production and use of maps.

Spatial predictions of primary soil properties can be used to:

• Derive spatial aggregates (upscaling to coarser resolution).

• Derive vertical aggregates e.g. mean pH in 0–100 cm of soil (for this we usually recommend
using the trapezoidal rule as explained in Hengl et al (2017a)).

• Derive secondary soil properties e.g. available water capacity, organic carbon stock etc.

Spatial predictions of primary soil variables and derived soil variables are meant to be used for
decision making and further modeling i.e. they are used to construct a Soil Information System
once all values of all variables are known for all pixels within the soil mask. A SIS should ideally
provide information that can directly support input to modeling, planning and decision-making.

8.2 Technical specifications affecting the majority of production costs

The majority of the costs of a PSM project are controlled by the following:

1. Spatial resolution (commonly 30 m, 100 m or 250 m): Spatial resolution is crucial in deter-
mining the total costs of PSM, especially in terms of computing, storage, network traffic and
hardware requirements. Changing the spatial resolution from 100 to 30 m means that about 10
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times more pixels will need to be produced, stored and shared via the network. This does not
always imply that the costs of PSM will also be 10 times greater than for a 100 m resolution
project, but the increase in costs is often going to follow a quadratic function. Also note that,
for even finer resolutions e.g. 5 m, very limited free public covariate data are available and
additional purchases of commercial RS products will typically be required. For example the
latest 12 m resolution WorldDEM (https://worlddem-database.terrasar.com/) can cost up to
10 USD per square km, which can increase PSM costs significantly.

2. List of target variables and their complexity: Some PSM projects focus on mapping 1–2
soil variables only, and as such can be rather straightforward to implement. Any PSM project
that requires creation of a complete Soil Information System (tens of quantitative soil variables
and soil types), will definitely demand more effort and hence potentially significantly increase
costs. Typically, evaluation and quality control of maps in a SIS requires an analyst to open
and visually compare patterns from different maps and to make use of considerable empir-
ical knowledge of soils. Costs of production can also be significantly increased depending on
whether lower and upper prediction intervals are required. As with increasing spatial resolution,
requesting lower and upper prediction intervals means that two times more pixels will need to
be produced.

3. Targeted accuracy/quality levels: Often the agencies that order spatial soil information
expect that predictions will achieve some desired accuracy targets. Accuracy of predictions can,
indeed, often be improved (but only up to a certain level), by simply improving the modelling
framework (PSM projects type C). In practice, if a contractor requires significant improvements
in accuracy, then this often means that both additional point records and improved covariate
data (for example at finer spatial resolution) will need to be collected and/or purchased. This
can often mean that the original budget will have to be increased until the required accuracy
level can be reached.

4. List of targeted services / user domain: Is the goal of the PSM project to produce data
only, or to serve this data for a number of applications (use-cases)? How broad is the user
domain? Is the data being made for a few targeted clients or for the widest possible user base?
Is high traffic expected and, if so, how will the costs of hosting and serving the data and
processes be met? Producing a robust, scalable web-system that can serve thousands of users
at the same time requires considerable investments in programming and maintenance.

5. Commercialization options: Commercialization of data and services can also significantly
increase costs, since the development team needs to prepare also workflows where invoices
and bills are generated on demand, or where efficient support and security are now critically
important. Even though many companies exist that offer outsourcing of this functionality, many
organizations and companies prefer to have full control of the commercialization steps, hence
such functionality needs to be then developed internally within the project or organization.

8.2.1 Field observations and measurements

Observations and measurements (O&M) are at the heart of all advances in scientific endeavor.
One cannot describe, or attempt to understand, what one cannot see, or measure. Great leaps
in scientific understanding have always followed from major improvements in the ability to see,

https://worlddem-database.terrasar.com/
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and measure, phenomenon or objects. Think of the telescope and astronomy, the microscope and
microbiology, the X-ray and atomic structure or crystallography and so on.

In the area of resource inventories, observations and measurements carried out in the field (field
data) provide the evidence critical to developing the understanding of spatial patterns and spatial
processes that underpins all models that predict the spatial distribution of properties or classes.
This applies equally to subjective, empirical mental, or conceptual, models and objective, quan-
titative statistical models. The more and better the observations and measurements we obtain,
the better will be our ability to understand and predict spatial patterns of soils and other natural
phenomena. Consider here some general observations on how to maximize efficiency of O&M:

• For maximum utility, field data should be objective and reproducible.

• They should be collected using some kind of unbiased sampling design that supports repro-
ducibility and return sampling (Brus, 2019; Malone et al, 2019).

• They should be located as accurately as possible in both space (geolocation) and time (temporal
location).

• They should describe and measure actual conditions in their present state (and current land
use) and not in some assumed natural, climax or equilibrium condition.

• They should capture and permit description of spatial and temporal variation across multiple
spatial scales and time frames.

It is widely assumed that collecting new field data to produce new and improved inventory prod-
ucts is prohibitively expensive and will never be possible or affordable in the foreseeable future.
Consequently, most current projects or programs that aim to produce new maps of soils or other
terrestrial entities have explicitly embraced the assumption that the only feasible way to pro-
duce new soil maps is to locate, and make use of, existing legacy data consisting of previously
reported field observations or existing laboratory analysed field samples. However, recent activities
in Africa (www.Africasoils.net), for example, have demonstrated conclusively that it is feasible,
affordable and beneficial to collect new field observations and samples and to analyse new soil
samples affordably and to a high standard (Shepherd and Walsh, 2007).

8.2.2 Preparation of point data

Import of basic O&M field data (e.g. soil point data) can be time consuming and require intensive,
often manual, checking and harmonization. Communicating with the original data producers is
highly recommended to reduce errors during import. Getting original data producers involved can
be best achieved by inviting them to become full participants ( e.g. join in joint publications) or
by at least providing adequate and visible acknowledgement (e.g. listing names and affiliations in
metadata or on project websites).

Documenting all import, filtering and translation steps applied to source data is highly recom-
mended, as these steps can then be communicated to the original field data producers to help
filter out further bugs. We typically generate a single tabular object with the following properties
as our final output of point data preparation :
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• Consistent column names are used; metadata explaining column names is provided,

• All columns contain standardized data (same variable type, same measurement units) with
harmonized values (no significant bias in values from sub-methods),

• All artifacts, outliers and typos have been identified and corrected to the best of our ability,

• Missing values have been imputed (replaced with estimated values) as much as possible,

• Spatial coordinates, including depths, (x,y,z) are available for all rows (point locations).

8.2.3 Preparation of covariates

As mentioned previously, preparation of covariate layers can require significant effort, even if RS
data is publicly available and well documented. For example, MODIS land products are among
the most used RS layers for global to regional PSM. Using raw reflectance data, such as the
mid-infrared MODIS bands from a single day can, however, be of limited use for soil mapping
in areas with dynamic vegetation, i.e. with strong seasonal changes in vegetation cover. To ac-
count for seasonal fluctuation and for inter-annual variations in surface reflectance, we instead
advise using long-term temporal signatures of the soil surface derived as monthly averages from
long-term MODIS imagery (18+ years of data). We assume here that, for each location in the
world, long-term average seasonal signatures of surface reflectance or vegetation index provide a
better indication of site environmental characteristics than just a single day snapshot of surface
reflectance. Computing temporal signatures of the land surface requires a large investment of time
(comparable to the generation of climatic images vs temporary weather maps), but it is possibly
the only way to effectively represent the cumulative influence of living organisms on soil formation
(Hengl et al, 2017a).

Typical operations to prepare soil covariates for PSM thus include:

• Downloading the original source RS data,

• Filtering missing pixels using neighborhood filters and/or simple rules,

• Running aggregation functions (usually via some tiling system),

• Running hydrological and morphological analysis on source DEM data

• Calculation of a Gaussian pyramid, for some relevant covariates, at multiple coarser resolutions,
in order to capture multi-scale variation at appropriate (longer range) process scales.

• Preparing final mosaics to be used for PSM (e.g. convert to GeoTIFFs and compress using
internal compression "COMPRESS=DEFLATE" or similar),

For processing the covariates we currently use a combination of Open Source GIS software, pri-
marily SAGA GIS, GRASS GIS, Whitebox tools, R packages raster, sp, GSIF and GDAL for re-
projecting, mosaicking and merging tiles. SAGA GIS and GDAL were found to be highly suitable
for processing massive data sets, as parallelization of computing was relatively easy to implement.

Preparation of covariate layers is completed once:
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• all layers have been resampled to exactly the same grid resolution and spatial reference frame
(downscaling or aggregation applied where necessary),

• all layers are complete (present for >95% of the soil mask at least; the remaining 5% of missing
pixels can usually be filled-in using some algorithm),

• there are no visibly obvious artifacts or blunders in the input covariate layers,

8.2.4 Soil mask and the grid system

We recommend using a raster mask file to define the spatial domain of interest (i.e. total number
of pixels to be mapped), and the spatial reference framework for PSM. The mask file defines the
maximum extent, or bounds, of the area for which predictions will be made. It also identifies any
grid cells, within the maximum bounds, which are to be excluded from prediction for various rea-
sons (e.g. water, ice or human disturbance). Finally, the mask file establishes the resolution (pixel
size) and spatial coordinate system that all other layers included in the analysis must conform to,
to ensure consistent overlay of all grids. In most of our PSM projects we typically restrict ourselves
to making predictions only for pixels that exhibit some evidence of having photosynthetically ac-
tive vegetative cover at some point in time. We tend to exclude from prediction any grid cells that
have no evidence of vegetative cover at any time, such as permanent bodies of water or ice, bare
rock and man made features such as roads, bridges and buildings. A generic definition of a soil
mask can differ somewhat from the one we use, but this has been our practice.

 

 

Fig. 8.3 Example of a soil (land) mask scheme.

From the perspective of global soil mapping, any terrestrial location on Earth can be considered
to belong to one and only one of six categories (excluding oceans):

A. Fresh water (lakes, rivers)

B. Permanent ice or snow

C. Bare rocks

D. Urban areas

E. Bare soil areas

F. Soils with vegetation cover
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This gives the following formulas:

F = Land mask - ( A + B + C + D + E )

Soil mask = D + E + F

Hence the values in the soil mask can be typically coded as:

• 0 = NA or non-soil

• 1 = soils with vegetation cover

• 2 = urban areas

• 3 = bare soil areas

If no other layers are available, global maps of land cover can be used to produce a soil mask file
(following the simple formula from above). Some known global land cover layers are:

• 300 m resolution: ESA CCI Land cover — 300 m annual global land cover time series from 1992
to 2015 (https://www.esa-landcover-cci.org/),

• 100 m resolution: ESA PROBA-V 100 m land cover map (http://land.copernicus.eu/global),

• 30 m resolution: Chinese GLC data product (GlobeLand30) with 10 classes for the years 2000
and 2010 (http://www.globallandcover.com),

Using widely accepted, published, global land cover maps to define a soil mask is highly recom-
mended. This allows users to validate the maps and also ensures future consistency in case there
is a need in the future to merge multiple maps covering larger areas.

Another important technical consideration for a PSM project is the grid system. The grid system
is defined by the bounding box, pixel size and number of rows and columns:

• Xmin, Xmax, Ymin, Ymax,
• Spatial resolution in m (projected),
• Spatial resolution in DD,
• Number of rows (X) and columns (Y),

Maps referenced by geographical coordinates (EPSG:43261; used by the GPS satellite navigation
system and for NATOmilitary geodetic surveying) have spatial resolution given in abstract decimal
degrees (which do not relate 1:1 with metric resolution). Some standard spatial resolutions (in
decimal degrees) can be derived using the following simple rules of thumb (d.d. = decimal degrees):

• 30 m � 1/4000 d.d. = 0.00025

• 100 m � 1/1200 d.d. = 0.0008333333

• 250 m � 1/480 d.d. = 0.002083333

• 500 m � 1/240 d.d. = 0.004166667
1 http://spatialreference.org/ref/epsg/wgs-84/

https://www.esa-landcover-cci.org/
http://land.copernicus.eu/global
http://www.globallandcover.com
http://spatialreference.org/ref/epsg/wgs-84/
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• 1 km � 1/120 d.d. = 0.008333333

Again, these are only approximate conversions. Differences in resolution in x/y coordinates in
projected 2D space and geographical coordinates can be large, especially around poles and near
the equator.

Another highly recommended convention is to use some widely accepted Equal area projection
system for all intermediate and final output maps. This ensures the best possible precision in
determining area measures, which is often important e.g. for derivation of total stocks, volumes of
soil and soil components and similar. Every country tends to use a specific equal area projection
system for it’s mapping, which is usually available from the National mapping agency. For conti-
nental scale maps we recommend using e.g. the Equi7 grid system2. Some recognized advantages
of the Equi7 Grid system are:

• The projections of the Equi7 Grid are equidistant and hence suitable for various geographic
analyses, especially for derivation of buffer distances and for hydrological DEM modeling, i.e. to
derive all DEM-based soil covariates,

• Areal and shape distortions stemming from the Equi7 Grid projection are relatively small,
yielding a small grid oversampling factor,

• The Equi7 Grid system ensures an efficient raster data storage while suppressing inaccuracies
during spatial transformation.

8.2.5 Uncertainty of PSM maps

For soil maps to be considered trustworthy and used appropriately, producers are often required
to report mapping accuracy (usually per soil variable) and identify limitations of the produced
maps. There are many measures of mapping accuracy, but usually these can be grouped around
the following two approaches:

1. Prediction intervals at each prediction point, i.e. lower and upper limits for 90% probability
range.

2. Global (whole-map) measures of the mapping accuracy (RMSE, ME, CCC, z-scores, variogram
of CV residuals).

The mean width of prediction intervals and global measures of mapping accuracy should, in
principle, match, although it is possible that the mean width of prediction intervals can often
be somewhat wider (a consequence of extrapolation). In some cases, measures of uncertainty can
be over-optimistic or biased (which will eventually be exposed by new observations), which can
decrease confidence in the product, hence providing realistic estimates of uncertainty of uncertainty
is often equally as important as optimizing predictions.

Common approaches to improving the accuracy of predicted maps i.e. narrowing down the predic-
tion intervals are to (a) collect new additional data at point locations where models perform the
2 https://github.com/TUW-GEO/Equi7Grid

https://github.com/TUW-GEO/Equi7Grid
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poorest (e.g. exhibit the widest prediction intervals), and (b) invest in preparing more meaningful
covariates, especially finer resolution covariates. Technical specifications, however, influence the
production costs and have to be considered carefully as production costs can significantly increase
with e.g. finer pixel size. Aiming at 30% lower RMSE might seem trivial but the costs of such
improvement could exceed the original budget by several times (Hengl et al, 2013).

8.2.6 Computing costs

To achieve efficient computing, experienced data scientists understand the importance of utilizing
the full capacity of the available hardware to its maximum potential (100%). This usually implies
that:

• the most up-to-date software is used for all computing tasks,

• the software is installed in such a way that it can achieve maximum computing capacity,

• any function, or process, that can be parallelized in theory is also parallelized in practice,

• running functions on the system will not result in system shutdowns, failures or artifacts,

As mentioned previously, applying PSM for large areas at finer resolutions (billions of pixels)
benefits from use of a high performance computing (HPC) server to run overlay, model fitting and
predictions and to then generate mosaics. The current code presented in this PSM with R book is
more or less 90% optimized so that running of the most important functions can be easily scaled
up. The total time required to run one global update on a single dedicated HPC server (e.g. via
Amazon AWS) for a soil mask that contains >100 million pixels can require weeks of computing
time. Copying and uploading files can also be a lengthy process.

A configuration we adopt, and recommend, for processing large stacks of grids with a large number
of evidence points is e.g. the OVH server3:

• EG-512-H4 (512GB RAM takes 3 weeks of computing; costs ca € 950,00 per month)

An alternative to using OVH is the Amazon AWS (Fig. 8.4). Amazon AWS server, with a similar
configuration, might appear to cost much more than an OVH server (especially if used continuously
over a month period), but Amazon permits computing costs to be paid by the hour, which provides
more flexibility for less intensive users. As a rule of thumb, a dedicated server at Amazon AWS,
if used continuously 100% for the whole month, could cost up to 2.5 times more than an OVH
server.

The recommended server for running PSM on Amazon AWS to produce predictions for billions of
pixels is:

• AWS m4.16xlarge5 ($3.84 per Hour);
3 https://www.ovh.nl/dedicated_servers/HG/
4 https://www.ovh.nl/dedicated_servers/infrastructure/1801eg08.xml
5 https://aws.amazon.com/ec2/pricing/on-demand/

https://www.ovh.nl/dedicated_servers/HG/
https://www.ovh.nl/dedicated_servers/infrastructure/1801eg08.xml
https://aws.amazon.com/ec2/pricing/on-demand/
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Fig. 8.4 Example of an AWS dedicated server running spatial predictions on 96 threads and using almost
500GB of RAM. Renting out this server can cost up to 8 USD per hour.

A HPC server should also have at least 2–3TB of hard disk space to host all input and output
data. In addition to computing costs, one also needs to carefully consider web hosting and web
traffic costs. For large data sets these can almost equal actual computing production costs.

8.3 Final delivery of maps

8.3.1 Delivery data formats

A highly suitable and flexible data format for delivering raster images of soil variables is GeoTIFF.
We prefer using this format for sharing raster data for the following reasons (Mitchell and GDAL
Developers, 2014):
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• It is GDAL’s default data format and much functionality for subsetting, reprojecting, reading
and writing GeoTIFFs already exists (see GDAL utils6).

• It supports internal compression via creation options (e.g. COMPRESS=DEFLATE).

• Extensive overlay, subset, index, translate functionality is available via GDAL and other open
source software. Basically, the GeoTIFF format functions as a raster DB.

By exporting spatial data to GeoTiffs, one can create a soil spatial DB or a soil information system.
This does not necessarily mean that its targeted users will be able to find all information without
problems and/or questions. The usability and popularity of a data set reflect many considerations
in addition to data quality.

Another useful aspect of final delivery of maps is compression of the GeoTIFFs. To avoid large file
sizes, we recommend always using integers inside GeoTIFF formats because floating point formats
can result in increases in file sizes of up four times (with no increase in accuracy). This might
require multiplication of original values of the soil property of interest by 10 or 100, in order to
maintain precision and accuracy (e.g. multiply pH values by 10 before exporting your raster into
integer GeoTIFF format).

8.3.2 General recommendations

Even maps of perfect quality might still not attract users, if they are not properly designed. Some
things to consider to increase both use and usability of map data are:

1. Make a landing page for your map data that includes: (a) simple access/download instructions,
(b) screenshots of your data in action (people prefer visual explanations with examples), (c)
links to key documents explaining how the data were produced, and (d) workflows explaining
how to request support (who to contact and how).

2. Make data accessible from multiple independent systems e.g. via WCS, FTP and through a
mirror site (in case one of the access sites goes offline). This might be inefficient considering
there will be multiple copies of the same data, but it can quadruple data usage.

3. Explain the data formats used to share data, and provide tutorials, for both beginners and
advanced users, that instruct how to access and use the data.

4. Consider installing and using a version control system (or simply use github or a similar repos-
itory) so that the users can track earlier versions of map data.

5. Consider closely following principles of reproducible research7 (all processing steps, inputs and
outputs are accessible). For example, making the R code available via github so that anyone is
theoretically able to reproduce all examples shown in the text. Transparency increases trust.

6 http://www.gdal.org/gdal_utilities.html
7 https://ropensci.org/blog/2014/06/09/reproducibility/

http://www.gdal.org/gdal_utilities.html
https://ropensci.org/blog/2014/06/09/reproducibility/
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8.3.3 Technical specifications PSM project

A way to improve planning of a PSM project is to spend more time on preparing the technical
aspects of data production. This includes listing the general specifications of the study area,
listing target variables and their collection methods, listing covariate layers of interest to be used
to improve mapping accuracy and listing targeted spatial prediction algorithms to be compared.

General specifications of the study area include:

• G.1 Project title:
• G.2 PSM project type:

– PSM project in a new area
– PSM project using legacy points
– PSM project aiming at optimizing predictions and usability

• G.3 Target spatial resolution:

– 10 m
– 30 m
– 100 m
– 250 m
– 1000 m

• G.4 Target temporal span (period of interest):

– Begin date,
– End date,

• G.5 Soil mask:

– raster image or land cover classes in the referent land cover map covering the study area

• G.6 Grid definition:

– Xmin,
– Ymin,
– Xmax,
– Ymax,

• G.7 Target projection system:

– proj48 code,

• G.8 Total area:

– in square-km,

• G.9 Inspection density (observations per square-km):

– Detailed soil profiles,
8 https://proj4.org/

https://proj4.org/
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– Soil semi-profiles,
– Top-soil / sub-soil samples (with laboratory analysis),
– Quick observations (no lab data),

• G.10 Total budget (planned):
• G.11 Total pixels in millions:

– amount of pixels for all predictions

• G.12 Total planned production costs per 1M pixels (divide G.10 by G.11):
• G.13 Target data license:
• G.14 Target user groups and workflows (targeted services):
• G.15 Further updates of maps:

– Continuous updates in regular intervals,
– Two prediction time intervals (start, end period),
– No updates required except fixes and corrections,

• G.16 Commercialization of the PSM outputs:

– No commercial data nor services,
– Commercial data products,
– Commercial services,

• G.17 Support options:

– Dedicated staff / live contact,
– Mailing list,
– Github / code repository issues,

8.3.4 Standard soil data production costs

Standard production costs can be roughly split into three main categories:

• Fixed costs (e.g. project initiation, equipment, materials, workshops etc),
• Variable data production costs expressed per:

– M (million) of pixels of data produced,
– Number of points samples,
– Number of variables modeled,

• Data maintenance and web-serving costs, usually expressed as monthly/yearly costs,

Although in the introduction chapter we mentioned that the production costs are mainly a function
of grid resolution i.e. cartographic scale, in practice several other factors determine the total costs.
Standard soil data production costs (approximate estimates) per soil data quality category (see
below) are connected to the quality level of the output maps. Consider that there are four main
quality levels:
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Table 8.1 Example of a costs table for various quality levels PSM products. Prices expressed in USD / Mpix
(million of pixels produced).

Project_type L0 L1 L2 L3
New area (single state) 500-1000 1,000-5,000 5,000-50,000 >50,000
Using legacy points (single state) 0.8 2 2–50 >50
Aiming at optimizing predictions 0.5 0.8 NA NA
Aiming at change detection (two states) NA NA NA NA
Aiming at monitoring (multiple states) NA NA NA NA

• L0 = initial product with only few soil properties, no quality/accuracy requirements,
• L1 = final complete product with no quality/accuracy requirements,
• L2 = final complete product matching standard accuracy requirements,
• L3 = final complete certified product according to the ISO or similar standards.

To convert average costs / M pixels to total costs we run the following calculus:

• Pixel resolution = 100 m
• USA48 area = 8,080,464.3 square-km
• Total pixels 6 depths 3 soil properties = 14,544 Mpix
• Average production costs (L1) = 0.8 US$ / Mpix
• Total production costs PSM projects using legacy points (single state, L1) = 11,635 US$
• Average production costs (L2) = 2 US$ / Mpix
• Total production costs PSM projects using legacy points (single state, L2) = 29,088 US$

Note: this is a very generic estimate of the production costs and actual numbers might be signifi-
cantly different. Additional fixed costs + monthly/yearly costs need to be added to these numbers
to account also for any web hosting, support or update costs.
Compare these costs with the following standard estimated costs to deliver completed conventional
manual soil survey products (see also section 5.3.7):

• USDA estimate of the total soil survey costs: 4 US$ per ha for 1:20,000 scale maps (Durana,
2008) to map USA48 area = 3.2 billion US$,

• New Zealand: 4 US$ per ha for 1:20,000 scale maps (Carrick et al, 2010),
• Canada: 3–10 CA$ per ha for 1:20,000 scale maps (MacMillan et al, 2010),

8.4 Summary notes

Predictive soil mapping applies statistical and/or machine learning techniques to fit models for
the purpose of producing spatial and/or spatiotemporal predictions of soil variables i.e. to produce
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maps of soil properties or soil classes at various resolutions. This chapter identifies and discusses
some of the key technical specifications users need to consider to prepare for data production and
to obtain realistic estimates of workloads and production costs.

The key technical specifications of a PSM project are considered to consist of defining the following:
a soil mask, a spatial resolution, a list of target variables and standard depth intervals (for 3D soil
variables), prediction intervals (if required), any secondary soil variables (and how they will be
derived) and required accuracy levels. Technical specifications determine the production costs and
need to be considered carefully as production costs are sensitive to specifications, (e.g. 3 times finer
pixel size can increase production costs up to 10 times, or setting targets such as 30% lower RMSE
can increase costs as either more points or more covariates, or both, need to be included. General
forms at the end of the chapter provide an example of detailed list of technical specifications in
relation to target variables and covariate layers typically used in PSM projects to date.



Chapter 9

The future of predictive soil mapping

Edited by: R. A. MacMillan and T. Hengl

9.1 Introduction

This chapter presents some opinions and speculation about how predictive soil mapping (PSM)
may evolve, develop and improve in the near term future. These thoughts were originally prepared
for a discussion document about whether national to provincial scale soil inventory programs in
Canada could, or indeed should, be reinvented and reinvigorated and, if so, how this reinvention
might be best designed and accomplished.

The solutions proposed for reinvigorating presently moribund soil inventory programs in Canada
were largely based on adopting new methods and ideas associated with PSM within a new collab-
orative, collective and open operational framework. These earlier thoughts were considered to be
relevant to the more general topic of the future of predictive soil mapping (PSM). As such, the
original discussion document was slightly modified, extended and included as a chapter in this
book.

This chapter addresses the following two main issues:

• What caused past national to state level conventional soil, and other terrestrial resource, in-
ventory programs to anthropy and disappear globally and can they now be renewed and resur-
rected?

• How can the methods and ideas behind PSM be adopted and applied to accomplish the goal
of renewing and reviving conventional soil and terrestrial resource inventory programs?

329
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9.2 Past conventional terrestrial resource inventories

9.2.1 Why have most national resource inventories been discontinued?

Historically, almost all past terrestrial resource inventory agencies were slow, expensive to maintain
and failed to produce complete, consistent, current and correct map coverage (4Cs) for entire areas
of political jurisdiction or interest. Most national agencies were unable to completely map an entire
administrative area affordably at any useful scale using a single consistent methodology applied
over a relatively short time span to produce a single wall to wall map product. Instead almost all
past inventory efforts have been piecemeal and incomplete.

This resulted in what we consider to be “the embarrassment of the index map”. Virtually every
jurisdiction produced an index map to illustrate which parts of the jurisdiction had been mapped
at all, which different mapping methods were used to map different parts, which eras or years each
bit of mapping represented and what scale of mapping had been carried out in any part. This
index map was often proudly displayed and circulated to illustrate how much progress had been
made towards mapping an entire jurisdiction of interest. In actual fact, the index map represented
a powerful demonstration of all that was wrong with mapping and mapping progress in that
jurisdiction.

The first thing that index maps clearly demonstrated was that there was no complete map coverage
for the area at any scale. The second thing highlighted was that there was no consistency in scale,
methods or legend across even areas that had been mapped. Different areas had been mapped at
different scales, over different times, using different concepts and legends and no effort had been
expended to achieve consistency across the entire area. The third thing that would also become
immediately obvious was that, at current rates, complete mapping of any jurisdiction would never
be achieved in anyone’s lifetime. Not particularly encouraging information to impart. And yet,
every agency maintained an index map and loved to share it.

Another significant historical misjudgement was the failure to make the information and services
provided by terrestrial inventory service agencies critically important and absolutely necessary to
at least one essential decision making process, preferably a legally mandated one. Where inventory
agencies still survive, they have linked their products and services intimately to one or more
clearly defined, and legally mandated, decision making processes that involve the expenditure of
considerable sums of (usually public) money. Soil survey survives in the USA (at least for now)
largely because county scale soil maps are a critical requirement for calculating eligibility for
financial support payments for many agricultural subsidy and support payment programs. You
cannot apply for, or obtain, a subsidy payment unless you have a soil survey map to justify your
eligibility for the payment and to document where and how the required supported activity will
be implemented.

It can be argued that many terrestrial resource inventory programs failed (and disappeared) be-
cause they viewed themselves as their own primary customer and designed and delivered products
and services meant to satisfy their own desires and expectations and not those of real, downstream
users. They became convinced of the rightness, value and importance of their maps and databases
the way they wanted to make them and did not effectively listen to, or respond to, criticism of
these products. Users would criticize conventional soil polygon maps and reports filled with com-
plicated jargon and impenetrable legends and be dismissed as simply not being able to understand
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a soil map and to appreciate how complicated and complex it was to portray the spatial variation
in soils in a simple way. Rather than trying to design and make simpler representations of more
easily understood spatial patterns, terrestrial inventory agencies would suggest that an expert in
making the maps was required to assist users in interpretation and use of any map.

9.2.2 Is there a future for conventional terrestrial inventory
programs?

We have asked ourselves, “can conventional comprehensive soil and similar terrestrial inventory
programs be saved or renewed?” The short answer is: probably no, at least not in their present
format. Conventional resource inventory programs have become too expensive, too slow to deliver
needed outputs and too slow to change to produce innovative and needed products. There is now
probably insufficient will, money, demand or benefit to support continuation, or re-establishment,
of conventional, government-funded, comprehensive inventory programs as we have known them
in the past. However, that does not mean that all needs and benefits previously provided by
comprehensive inventory programs are being met now or that they do not need to be met. There
are a large number of benefits associated with the existence of comprehensive inventories and we
ask if these may not be important to continue to service and if they might still be provided under
some newly redesigned framework.

9.2.3 Can terrestrial inventory programs be renewed and revived?

One of our key hopes (which we especially try to achieve through the OpenGeoHub Foundation),
is to contribute to a discussion of how comprehensive terrestrial resource inventory programs
(or equivalent frameworks) might be re-imagined, re-designed, re-invented, re-implemented and
renewed at regional to national to global scales, for the next generation, and by whom.

We consider here that we are now at a nexus where it has become possible to address and re-
dress many of the past inconsistencies and oversights in terrestrial resource mapping. It is now
completely feasible to aspire to affordably and expeditiously produce new predictive maps that
achieve the 4 Cs and are:

• Complete (e.g. cover entire areas of interest),

• Consistent (e.g. are made using a single methodology, applied at a single scale and over a
single short period of time),

• Current (e.g. represent conditions as they are today, at a specific moment in time),

• Correct (e.g. are as accurate as is possible to achieve given available data and methods),

We consider that it is also now possible to redesign any new output maps so that they are capable
of acting directly as inputs to well established processes and programs for planning and decision
making at national to regional to operational scales. And we consider that we have a unique
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opportunity to work collaboratively with numerous actual and potential users of spatial inventory
data to ensure that new output products directly meet their spatial data needs.

9.2.4 How can terrestrial inventory programs be renewed and revived
and by whom?

In light of developments in science, technology, methods of societal interaction and new models
of funding and cooperative action, we suggest that looking back at how things were done in the
past no longer provides the most appropriate model for how inventory activities ought to be
designed and conducted in the future. We argue that it is preferable to re-imagine an entirely new
framework for cooperation, which takes advantage of new scientific and organizational advances
and within which many of the acknowledged benefits of previous, government-funded, programs
can be delivered within a new model of cooperative, collective action and sharing.

In this age of Facebook and Twitter and Wikipedia and Google Earth, it is no longer the purview,
or responsibility, of any single, government funded, agency to collect, produce, maintain and
distribute comprehensive information about the spatial distribution of soils, eco-systems, terrain
units, wetlands or any other terrestrial attributes. We believe that it should instead become
a collective responsibility, for a large variety of overlapping groups and institutions, to create,
maintain and share spatial information of common interest. It is incumbent on these diverse
interest groups to identify mechanisms by which willing collaborators can join together to produce,
maintain and distribute basic levels of spatially distributed land resource information jointly and
collectively.

9.3 The future of PSM: Embracing scientific and technical advances

9.3.1 Overview

We consider that any new, future collaborative PSM activity should take advantage of recent
scientific and technical advances in the following areas:

• Collection of field observations and samples:

– Collating and harmonizing existing legacy soils data,

– New field sampling designs and programs and new data collection strategies,

• Characterization of soils in the field and in the laboratory:

– New field sensors for characterizing soils in situ,

– New faster, cheaper and more accurate methods of laboratory analysis,
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• Creation, collation and distribution of comprehensive sets of environmental covariates:

– Introduce new covariate data sets based on new remote, air and space sensors,

– Include new varieties and resolutions of DEM and other environmental covariate data,

– Maximize use and relevance of existing data sets of environmental covariates,

• Automated spatial prediction models:

– Replace previous qualitative and subjective mental models with new quantitative and objec-
tive statistical models,

– Adopt new methods of automated space-time modelling and prediction,

• New options for hosting, publishing, sharing and using spatial data via cloud services:

– Develop new platforms for collaborative data sharing and geo-publishing,

– Develop open services to deliver on-demand, real time online mapping,

9.3.2 Collection of field observations and samples

We can improve how we locate and obtain data on field observations and measurements. These
O&M field data provide the evidence that is essential for developing all spatial prediction models
and outputs. First consider the challenges and opportunities associated with identifying, obtaining
and using existing, or legacy, field observations and measurements.

Legacy field data refers to any field observations or measurements that were collected in the
past and that remain discoverable and available for present use. Typically, these legacy field
data consist of either field observations and classifications made at point locations to support
the development of conventional, manually prepared maps or of laboratory analysed samples,
collected to support characterization of point locations considered to be typical or representative
of a particular soil class or individual. Legacy field data may already be in digital format and
stored in digital databases. More often, legacy data are found in paper reports, manuals, scientific
publications and other hard copy formats that require the data to first be transformed into digital
format and then harmonized into a standardized format before they can be used effectively.

Legacy field data typically possess several characteristics which can make their use for producing
new inventory map products problematic. Some common limitations of legacy field data are:

• They are rarely collected using any kind of rigorous, statistically valid, sampling design,

• Their locations in space (geolocations) are often not measured or reported accurately,

• Their locations in time (sampling dates) are often unknown or are spread over decades,

• The methods used in description or analysis can vary greatly by source, location or time,

• They can be difficult and costly to find, to obtain, to digitize and to harmonize,
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Despite these limitations, legacy field data have other attributes that make them valuable and
worth assembling, collating, harmonizing and using. The advantages associated with using legacy
field data can be summarized as follows:

• Legacy point data provide the only source of baseline information about past time periods:

– We can’t go back in time to collect new samples or make new observations applicable to past
time periods,

– They establish prior probabilities which are essentially starting points that describe what we
know now before we start making new predictions and new maps using new data,

• Legacy point data are all we have initially to work with until new field data can be obtained:

– Use of legacy field data can help us to learn and to improve methods and approaches,

– Working through the full cycle required to produce predictive maps using legacy data lets
us learn a lot about how to do it and, more importantly, how we might do it better the next
time around,

– They give us something to work with to provide real-world, worked examples, for ourselves
and for potential users, of the kinds of maps and other products that can now be produced
using modern automated prediction methods,

• Legacy point data help us to illustrate problems, weaknesses and opportunities for improvement:

– Gaps in existing legacy data (missing data in space and time) help to illustrate the need to
have samples that comprehensively cover all areas of space and time of interest,

– Errors and uncertainties in initial predictive maps based on legacy field data provide a clear
illustration of the need for more and better field data to improve future mapping,

– The spatial distribution of uncertainties computed for initial maps created using legacy
data can identify locations where new observations and samples are most needed and will
contribute most to improving subsequent predictions,

Legacy point data can be surprisingly difficult and costly to find, obtain, harmonize and digitize
(Arrouays et al, 2017). One can only imagine how many hundreds of thousands, even millions,
of site observations may have been made by field personnel undertaking many different types of
inventories for many different agencies over the years. Similarly, laboratories have definitely ana-
lyzed millions of soil samples over the years for samples collected by government agencies, private
sector consulting companies, NGOs, advocacy groups, farmers or landowners. Unfortunately, very
few of these observations or samples have survived to enter the public domain where they can now
be easily located and obtained.

In an ideal world, it would be possible to identify and obtain hundreds of thousands to perhaps
even millions of laboratory analysed results for point locations globally. These samples surely
were taken and analysed but they no longer remain accessible. Instead, best efforts to date have
resulted in rescuing some 300,000 to 350,000 records globally for which soil analytical data exist
for geolocated point locations. What has happened to all of the thousands to millions of other
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analysed samples that were undeniably collected and analysed? Essentially they may be considered
to be lost in the mists of time, victims of lack of will and lack of resources to support maintaining a
viable archive of observation and sample results over the years. Unfortunately, no entity or agency
had the mandate to maintain such a comprehensive global archive and no one had the vision or
resources to take on such a challenge.

The world can do a much better job of locating, harmonizing, archiving and sharing global legacy
field and laboratory data than it has done to date (Arrouays et al, 2017). It is incumbent on
agencies, companies, organizations and individuals that hold, or are aware of, collections of legacy
field data to step forward to offer to contribute such data to a comprehensive and open repository
of field observations and laboratory measurements. We would hope that the evidence of beneficial
use of legacy point data by OpenGeoHub to produce concrete examples of needed and useful spatial
outputs would encourage entities that hold field O&M data that are not currently publicly available
to contribute them for future use by a community of global mappers. Techniques developed by
OpenGeoHub to collate and harmonize legacy point data could be applied to any new, previously
overlooked, data sets contributed, in the future, by interested parties.

9.3.3 Collecting new field O&M data

The Africa Soil Information Service (AfSIS) project (http://www.africasoils.net) provides a pow-
erful example of how new field observations and laboratory analysed field data can be collected in
a manner that is reliable, feasible and affordable. AfSIS is one of the very few global examples of
an entity that has not accepted that collection of new field data is too difficult and too expensive
to contemplate. Instead, AfSIS asked the question “how can we make it feasible and affordable to
collect new, high quality, field data?” And then AfSIS (and several partner countries) went ahead
and collected new field data using modern, robust and affordable methods of field sampling and
laboratory analysis.

Following the example of AfSIS, we can identify the following major considerations for how the
collection of new field O&M data can be made both more affordable and more effective.

• Select locations for field sampling using a formal, rigorous sampling design (Brown et al, 2015;
Stumpf et al, 2017; Brus, 2019),

– Design based sampling schemes:

· Random sampling,

· Stratified random sampling,

· Systematic sampling (confluence point or grid sampling),

· Nested, multi-scale hierarchical sampling,

· Spatially-based sampling,

– Model based sampling schemes:

· Conditioned Latin Hypercube (cLHC) sampling (Malone et al, 2019),

http://www.africasoils.net
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· Multi-stage sampling at locations of maximum uncertainty,

• Systematize and automate all field sampling and recording procedures as much as possible,

– Create custom tools and apps to support:

· Locating sample sites and recording observations,

· Assigning unique identifier sample numbers to all locations and samples,

· Tracking progress of samples from the field through the lab to the database,

Adopting formal sampling designs to identify where to best collect new field O&M samples offers
several significant advantages.

Firstly, statistically valid sampling schemes ensure that the fewest number of samples are required
to achieve the most correct and representative values to characterize any area of interest. This
minimizes field data collection costs while maximizing usefulness of the samples. Secondly, there
is rapidly growing interest in, and need for, measuring and monitoring of changes in environmen-
tal conditions through time (e.g. carbon sequestration or losses, fertility changes). Quantitative
statements can only be made about the accuracy of changes in values for any given area if there
is an ability to replicate those values with a subsequent comparable sampling effort. The ability
to return to any given area at some later time to collect a second set of statistically representa-
tive field samples is essential to any effort to quantify and monitor changes through time. Only
statistically based sampling frameworks support repeat sampling.

Design based sampling schemes generally require little to no advance knowledge about the patterns
of spatial variation within an area to be sampled. They are best used for situations where there is
little existing knowledge about spatial variation and where there is a need to collect a representative
sample with the fewest possible sample points.

Of the design based options available a nested, multiscale sampling design based on a stratified
random sample framework or spatially-based sampling appears as a suitable option. In these nested
sampling approaches, explicit attention is given to ensuring that multiple samples are collected
at a succession of point locations with increasingly large interpoint separation distances (e.g. 1
m, 10 m, 100 m, 1 km). These multiple points support construction of semi-variograms that
quantify the amounts of variation in any attribute that occur across different distances. Knowing
how much of the total observed variation occurs across different distances can be very helpful for
identifying and selecting the most appropriate grid resolution(s) to use for predictive mapping.
If 100% of the observed variation occurs over distances shorter than the minimum feasible grid
resolution, then there is really no point in trying to map the attribute spatially at that resolution.
Similarly, if most of the observed variation occurs across longer distances, there is really little
point in using a very fine resolution grid for prediction. Most past purposive sampling undertaken
for conventional inventories was not particularly well suited to supporting geostatistics and the
production of semi-variograms.

Model based sampling frameworks are recommended for situations where there is some existing
(a-priori) knowledge about the spatial pattern of distribution of properties or classes of interest.
Conditioned Latin Hypercube (cLHC) sampling is based on first identifying all significant com-
binations of environmental conditions that occur in an area based on overlay and intersection of
grid maps that depict the spatial distribution of environmental covariates (Stumpf et al, 2016;
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Malone et al, 2019). Potential point sample locations are then identified and selected in such a
way that they represent all significant combinations of environmental conditions in an area. Point
samples are typically selected so that the numbers of samples taken are more or less proportional
to the frequency of occurrence of each significant combination of environmental covariates. This
ensures that samples cover the full range of combinations of environmental conditions (e.g. the
covariate space) in an area and sample numbers are proportional to the relative extent of each
major combination of environmental conditions in an area.

Field sampling programs can also be designed to collect new point samples at locations of maximum
uncertainty or error in a current set of spatial predictions (Stumpf et al, 2017). The spatially
located measures of uncertainty computed as one output of a prediction model can be used to
provide an indication of the locations where it may be most beneficial to collect new samples to
reduce uncertainty to the maximum extent possible. This type of sampling approach can proceed
sequentially, with predictions updated for both estimated values and computed uncertainty at all
locations after any new point sample data have been included in a new model run. It is often
not efficient to collect just one new point sample prior to rerunning a model and updating all
predictions of values and uncertainties. So, it is often recommended to collect a series of new
point observations at a number of locations that exhibit the largest estimates of uncertainty and
then update all predictions based on this series of new field point data. Collecting a series of
new multistage samples can be repeated as many times as is deemed necessary to achieve some
specified maximum acceptable level of uncertainty everywhere.

Field sampling can also be made more efficient, and less expensive, by creating and adopting
more systematic and automated procedures to support field description and sampling. Custom
apps can be developed to help to choose, and then locate, sampling points in the field rapidly
and accurately. These field apps can be extended to automate and systematize most aspects of
making and recording observations in the field, thereby increasing speed and accuracy and reducing
costs. Unique sample numbers can be generated to automatically assign unique and persistent
identifiers to every site and to every soil sample collected in the field. This can reduce costs and
errors associated with assigning different sample IDs at different stages in a sampling campaign (
e.g. field, lab, data entry). Persistent and unique machine readable identifiers can help to support
continuous, real-time tracking of the progress of field descriptions and soil samples from initial
collection in the field through laboratory analysis to final collation in a soil information system.
This consistency and reliability of tracking can also improve efficiency, decrease errors and reduce
costs for field description and laboratory analysis. Taken all together, improvements that automate
and systematize field descriptions and field sampling can make it much more affordable and feasible
to collect new field data through new field sampling programs.

Brus (2019) provides a systematic overview of sampling techniques and how to implement them
in R1. The author also recongizes that “further research is recommended on sampling designs for
mapping with machine learning techniques, designs that are robust against deviations of modeling
assumptions”.
1 https://github.com/DickBrus/TutorialSampling4DSM

https://github.com/DickBrus/TutorialSampling4DSM
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9.3.4 Characterization of soils in the field and the laboratory

Characterization of field profiles and samples can be made more affordable and feasible again by
making maximum use of new technologies that enable field descriptions and laboratory analyses
to be completed more rapidly, more affordably and more accurately.

Field characterizations can be improved by making use of a number of new technologies. Simply
taking geotagged digital photos of soil profiles and sample sites can provide effective information
that is located with accuracy in both space and time. New sensors based on handheld spec-
trophotometers are just beginning to become available. These may soon support fast, efficient and
accurate characterization of many soil physical and chemical attributes directly in the field. Other
field instruments such as ground penetrating radar (Gerber et al, 2010), electrical conductivity
and gamma ray spectroscopy (Rouze et al, 2017) are also becoming increasingly available and
useful. Field sensors for monitoring soil moisture and soil temperature in real time and transmit-
ting these data to a central location are also becoming increasingly common and affordable to
deploy. Portable MIR scanners achieve almost the same accuracy as laboratories (Hutengs et al,
2018). Simple field description protocols based on using mobile phones to crowdsource a set of
basic observations and measurements could enable massive public participation in collecting new
field data.

Recent developments in the use of new, rapid and accurate pharmaceutical grade analytical devices
have reduced the costs of typical laboratory analyses dramatically, while, at the same time, signif-
icantly improving on reproducibility and accuracy (Shepherd and Walsh, 2002, 2007). A modern
soil laboratory now entails making use of mid and near infrared spectrophotometers, X-ray diffrac-
tion and X-Ray diffusion and laser based particle size analysis. Using these new instruments, it
has been demonstrated that total costs for running a complete set of common soil analyses on a
full soil profile can be reduced from a current cost of US$ 2,000 to as little as US$ 2–10 per profile
(Shepherd and Walsh, 2007; Rossel et al, 2016). This reduction in cost, along with the associated
improvement in reproducibility is a game changer. It makes it, once again, feasible and affordable
to consider taking new field soil samples and analyzing them in the laboratory.

9.3.5 Creation, collation and distribution of effective environmental
covariates

Any future soil inventory activities will inevitably be largely based on development and applica-
tion of automated predictive soil mapping (PSM) methods. These methods are themselves based
on developing statistical relationships between environmental conditions that have been mapped
extensively, over an entire area of interest (e.g. environmental covariates), and geolocated point
observations that provide objective evidence about the properties or classes of soils (or any other
environmental attribute of interest) at specific sampled locations.

The quality of outputs generated by predictive mapping models is therefore highly dependent on
the quality of the point evidence and also on the environmental covariates available for use in any
model. For environmental covariates to be considered effective and useful, they must capture and
describe spatial variation in the most influential environmental conditions accurately and at the
appropriate level of spatial resolution (detail) and spatial abstraction (generalization). They must
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also describe those specific environmental conditions that exhibit the most direct influence on the
development and distribution of soils or soil properties (or of whatever else one wishes to predict).
The degree to which available environmental covariates can act as reliable and accurate proxies for
the main (scorpan) soil forming factors has a profound influence on the success of PSM methods.
If available covariates describe the environment comprehensively, accurately and correctly, it is
likely that predictive models will also achieve high levels of prediction accuracy and effectiveness,
if provided with sufficient suitable point training data.

Fortunately, advances in remote sensing and mapping continue to provide us with more and better
information on the global spatial distribution of many key (scorpan) environmental conditions.
Climate data (c) is becoming increasingly detailed, accurate and available. Similarly, many cur-
rently available kinds of remotely sensed imagery provide increasingly useful proxies for describing
spatial patterns of vegetation (o) and land use. Topography, or relief (r), is being described with
increasing detail, precision and accuracy by ever finer resolution global digital elevation models
(DEMs).

Unfortunately, several key environmental conditions are still not as well represented, by currently
available environmental covariates, as one would wish. Improvements need to be made in acquiring
global covariates that describe parent material (p), age (a) and spatial context or spatial position
(n) better than they currently are. In addition, the scorpan model recognizes that available infor-
mation about some aspect of the soil (s) can itself be used as a covariate in predicting some other
(related) aspect of the soil. Only recently have we begun to see complete and consistent global
maps of soil classes and soil properties emerge that can be used as covariates to represent the soil
(s) factor in prediction models based on the scorpan concept.

Advances are being made in developing new covariates that provide improved proxies for describing
parent material (p). Perhaps the best known of these, and the most directly relevant, is airborne
gamma ray spectroscopy (Wilford et al, 1997; Viscarra Rossel et al, 2007; Rouze et al, 2017).
This sensor can provide very direct and interpretable information from which inferences can be
made about both the mineralogy and the texture of the top few centimeters of the land surface.
A number of countries (e.g. Australia, Uganda, Ireland) already possess complete, country-wide
coverage of gamma ray spectroscopy surveys. More are likely to follow. Similarly, advances are
being made in interpreting satellite based measurements of spatio-temporal variations in ground
surface temperature and near surface soil moisture to infer properties of the parent material such
as texture, and to a lesser extent, mineralogy (Liu et al, 2012). These act as very indirect proxies
but they do help to distinguish warmer and more rapidly drying sands, for example, from colder
and slower drying wet clays. Identifying and acquiring more detailed and more accurate covariates
from which parent material type and texture can be inferred is a major ongoing challenge for
which progress has been slow.

Only recently have a number of investigators begun to suggest a variety of covariates that can be
calculated and used as proxies to describe spatial context or spatial position (n) in the scorpan
model (Behrens et al, 2018c). These measures of spatial context or position can help to account for
the effects of spatial autocorrelation in prediction models for many soil properties and attributes.
They also help to coax out effects related to spatial context and spatial scale. The old adage that
“what you see depends upon how closely you look” certainly applies to predictive soil mapping.
If one only looks at the finest detail, one overlooks the broader context and broader patterns.
Similarly, if one only looks at broad patterns (coarser resolutions) one can easily miss seeing, and
predicting, important shorter range variation. Soils are known to form in response to a number
of different soil forming processes and these processes are themselves known to operate over quite
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different ranges of process scales (or distances). So, if one looks only at the most detailed scales
(e.g. finest spatial resolution) one can easily fail to observe, describe and account for important
influences that operate across longer distances and larger scales. Increasingly, it is becoming evident
that prediction models generate more accurate results when they incorporate consideration of a
hierarchical pyramid of environmental covariates computed across a wide range of resolutions to
represent a wide range of process scales and formative influences (Behrens et al, 2018c,b).

A final, and very significant, consideration, for environmental covariates is one of degree of avail-
ability and ease of use. For covariates to be effective, they must be relatively easy to identify,
locate and use. Many existing spatial data sets need some form of preprocessing or transformation
in order to become useful inputs as environmental covariates in predictive mapping. Difficulties
and costs involved in locating, downloading and transforming these source data sets can severely
restrict their effective use. Equally, many of these same covariates are often located, downloaded
and processed multiple times by multiple entities for use in isolated projects and then archived
(or disposed of) and not made easily available for subsequent use and reuse. A mentality of “pro-
tecting my data” leads to limitations on sharing and reuse of spatial data with large resulting
costs from redoing the same work over and over for each new project. Significant improvements
could be realized if spatial data sets, once assembled, corrected and preprocessed, could be widely
shared and widely used.

In many PSM projects, as much as 80% of the time and effort expended can go into preparing
and collating the environmental covariates used in the modelling process. If modelers could work
collectively and collaboratively to share entire collections of relevant covariates at global to re-
gional to national scales, considerable efficiencies could be realized. Time and effort now spent in
assembling covariates could instead be devoted to locating and assembling more and better point
O&M data and on discovering and applying improved models. So, one key way in which future
inventory activities could be made much more efficient and cost-effective would be to develop
mechanisms and platforms whereby comprehensive stacks of environmental covariates, covering
entire regions of interest, could be jointly created, collated and freely shared. OpenGeoHub aims
to provide a fully worked example of such a platform for sharing geodata.

9.3.6 Automated spatial prediction models (PSM)

Rapid adoption of new, automated, spatial prediction methods is the most fundamental change
envisaged as being central to all efforts to redesign land resource inventories such that they can,
once again, become affordable and feasible to conduct. These models are quantitative, objective,
repeatable and updateable. They capture and codify understanding of how soils are arranged
spatially in the landscape, and why, in ways that are systematic, rigorous and verifiable. Results
of models can be updated regularly and easily, as new O&M point data, new covariates, or even
new modelling algorithms become available. The time and costs associated with constructing
prediction models is minimal in comparison with traditional manual mapping methods. Even
more dramatically, once constructed, models can be rerun, against improved data, to update
predictions regularly or to track changes in conditions through time.

Prediction models have changed, and improved, quite substantially, over the last few years. Most
initial PSM models were linear (simple) and universal (applied equally to entire areas). Newer PSM
models are increasingly non-linear and hierarchical with different mathematical combinations of
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predictors operating in different ways under different regional combinations of environmental con-
ditions. More powerful methods involving Deep Learning and Artificial Intelligence have recently
demonstrated improved prediction accuracies, compared to earlier, more simple, linear regression
or tree models.

Automated prediction models have several other clear advantages over conventional manual map-
ping methods. Consider again, the previously discussed manual approaches of top-down versus
bottom up mapping. Up until now, almost all previous manual (or indeed automated) mapping
programs have been bottom up approaches applicable to bounded areas of some defined and lim-
ited extent such as individual farm fields, map sheets, counties, provinces, states or, at a maximum,
entire countries. Any project that applies only to a bounded area of limited extent will, as a con-
sequence, only collect, analyse and use observations and data that exist within the boundaries of
the defined map extent.

Automated mapping methods have the advantage that they can be truly global. That is, they can
use, and consider, all available point data, everywhere in the world, as evidence when constructing
prediction rules. This means that all possible point data get used and no data go to waste.
Global models, that use all available global point data are, in fact, an elegant and simple way
of implementing the concept of Homosoil that has been advanced by Mallavan et al (2010). The
Homosol concept suggests that, if O&M data are not available for any particular point of interest
in the world, then one should search to identify and locate a point somewhere else in the world that
has the most similar possible combination of environmental conditions as the current unsampled
point but that has also been sampled. Data for this sampled site are then used to characterize
the current unsampled site. Global models simply reverse this search process by 180 degrees while
at the same time making it much more efficient and simpler to implement. Global models take
all available point data and then identify all other locations anywhere in the world that possess
similar combinations of environmental conditions. All these similar locations are then assigned,
via application of the prediction model, values for soil properties or soil classes that are similar to
those observed at the sampled reference location, or multiple similar locations.

Global models not only make use of all available point data to develop rules, they also capture and
quantify variation in soil classes and soil properties that operates over longer distances (10s to 100s
of km) and coarser scales. This longer range variation is usually related to soil forming processes
that themselves operate over longer distances, such as gradual, long distance variation in climate,
vegetation or even topography (at the level of regional physiography). Long range variation may
require consideration of patterns that express themselves over very large distances that may exist
partially, or entirely, outside the boundaries of some current bounded area of interest. Local,
bounded studies can easily fail to observe and quantify this long range variation.



342 9 The future of predictive soil mapping

 

soil samples soil profiles

single depth

soil layers soil horizons

multiple depth

Predictive Soil Mapping

Training points

Machine Learning Algorithms

- Basic: ranger, xgboost, ... 

- Extended: caret, mlr, 

SuperLearner, ...

USDA great groups

primary soil properties

primary soil classes

derived soil properties

derived soil classes

Initial data mining

organic carbon content
bulk density

sand, silt, clay content
soil pH

coarse fragments

texture class

soil organic carbon stock

available water capacity

Literature

Online databases

Soil legacy data

(2D) (3D)

numeric
soil

properties

Training points

soil
classes

 

Fig. 9.1 General workflow of the spatial prediction system used to produce soil property and class maps via
the LandGIS.

We can consider global models as providing a kind of elegant implementation of top down mapping
(Fig. 9.1). Global models capture, describe and quantify that portion of the total spatial variation
in soil properties and soil classes that occurs over longer distances in response to longer range soil
forming processes. This longer range variation may only constitute some rather small percentage
of the total range in local spatial variation in some property (typically some 10–30% of total
variation). But it does represent a component of the total variation that would likely be missed,
and not properly observed or accounted for, by local, bounded, models that do not consider
patterns of spatial variation that extend outside their maximum boundaries or that occur entirely
outside the boundaries of a contained study area.

In a top down mapping approach based on automated mapping, predictions made globally, using
all globally available point data, can be used to account for longer range patterns of variation and
can provide initial, a priori, estimates of the most likely values for soil properties or soil classes
at a point. These initial, a priori, estimates can subsequently be updated and improved upon by
more detailed local studies that have access to much larger volumes of local O&M point data. The
values computed for soil properties by global models can be merged with values estimated by local
models to create some form of merged weighted average. Alternately, the global estimates of soil
property values can be used to represent soil type covariates (s) in a scorpan prediction model.
Here, globally estimated property values are used as s-type covariates in predicting equivalent soil
property values at local scales using local models.

Automated spatial prediction models also permit us to recognize that otherwise similar soils de-
velop and express different properties under different types of human management. They don’t
just permit this recognition, they force us to recognize differences in soils that arise from dif-
ferences in land use. This is because automated prediction models are driven by the data that
are fed to them and field O&M data collected from managed landscapes will invariably report
different values for key soil properties than would be reported for otherwise similar soils under
natural or unmanaged conditions. Thus, for automated predictive models to actually work, they
have to observe and then predict differences in soils and soil properties between managed and
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natural landscapes. This was never something that was considered feasible to do with manual soil
mapping. Consequently managed soils were usually named and mapped as if they were identical
to their natural (unmanaged) equivalents. Differences might be described in reports or tables of
laboratory analyses, but the two variations of the same soil (managed and natural) were rarely, if
ever, mapped as separately described entities.

In a similar way, automated prediction methods force us to recognize and account for tempo-
ral variations that arise from changes in soil conditions or soil attributes at the same locations
over time. The models will predict values similar to those provided to them as input from field
observations and measurements. If we have point O&M data for the same point location that is
separated in time and that reflects changes in soil property values through time, we need to be
able to recognize this and adapt to it. We need to recognize that all predictions apply to a specific
time period and that different predictions (maps) need to be produced for different time periods,
if the available point O&M data reference widely different time periods.

In the context of automated mapping and High Performance Computing, opportunities for pro-
ducing high quality soil maps using Open Source software are becoming more and more attractive.
However, not all Open Source Machine Learning packages are equally applicable for processing
large national or international data sets at resolutions of 250 m or better. LandGIS predictions
are, for example, possible only thanks to the following packages that can be fully parallelized and
are ready for upscaling predictions (all written in C++ in fact):

• ranger (https://github.com/imbs-hl/ranger),

• xgboost (https://xgboost.readthedocs.io/en/latest/),

• liquidSVM (https://github.com/liquidSVM/liquidSVM),

these can be further efficiently combined with accuracy assessment and fine-tuning packages (also
ready for parallelization):

• SuperLearner (https://cran.r-project.org/web/packages/SuperLearner/),

• caret (https://topepo.github.io/caret/),

• mlr (https://mlr.mlr-org.com/),

Beyond that it is not trivial to use R for production of large rasters where millions of points
with hundreds of covariates are used for model building. So it is important to realize that Open
Source does not have out-of-box solutions for PSM projects, but requires active involvement and
development.

9.3.7 Hosting, publishing, sharing and using spatial data

Finally, we need to consider how future inventory activities can benefit from improved approaches
for hosting, publishing, sharing and using spatial data, with special attention paid to predictions
of soil properties or soil classes.

https://github.com/imbs-hl/ranger
https://xgboost.readthedocs.io/en/latest/
https://github.com/liquidSVM/liquidSVM
https://cran.r-project.org/web/packages/SuperLearner/
https://topepo.github.io/caret/
https://mlr.mlr-org.com/
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The value of data is in its use. Thus, we only get full value for our data if we can maximize
its distribution and use. Developments in mechanisms and communities for sharing digital data
online provide promise of greatly improved access to, and use of, new digital data sets, including
predictive soil maps. Major developments in hosting and delivering spatial data online include
new and increased interest in, and adherence to, principles of FAIR Data, FAST Data and, most
importantly, OPEN Data.

FAIR Data principles aim to make data findable, accessible, interoperable and reusable (Wilkinson
et al, 2016). The easier data are to locate and access, the greater the use is likely to be. Similarly,
data that are interoperable are easier to ingest into end user applications, and so, will receive
greater use. Data that are reusable also ensure maximum benefit by facilitating regular use and
reuse.

FAST data is the application of big data analytics to smaller data sets in near-real or real-time in
order to solve a problem or create business value. The goal of fast data is to quickly gather and mine
structured and unstructured data so that action can be taken (https://whatis.techtarget.com/
definition/fast-data). Fast data is fundamentally different from Big Data in many ways. Big Data
is most typically data at rest, hundreds of terabytes or even petabytes of it, taking up lots of space
on disk drives. Fast data is data in motion (https://www.voltdb.com/why-voltdb/big-data/).
OpenGeoHub aims to use Big Data analytics to rapidly and affordably turn static and unstructured
data into easily used, and widely used information. The objective should be to rapidly generate
agile, flexible and user oriented data.

Future soil inventory projects based on application of predictive soil modelling will also bene-
fit from adopting the following principles of OPEN Data based on the Sunlight Foundation’s
“Ten Principles for Opening up Government Information” (https://open.canada.ca/en/open-
data-principles#toc95):

1. Completeness
Data sets should be as complete as possible, reflecting the entirety of what is recorded
about a particular subject. All raw information from a data set should be released to the
public, unless there are Access to Information or Privacy issues. Metadata that defines and
explains the raw data should be included, along with explanations for how the data was calculated.

2. Primacy
Data sets should come from a primary source. This includes the original information collected by
the original sources and available details on how the data was collected. Public dissemination will
allow users to verify that information was collected properly and recorded accurately.

3. Timeliness
Data sets released should be made available to the public in a timely fashion. Whenever feasible,
information collected by original entities should be released as quickly as it is gathered and
collected. Priority should be given to data whose utility is time sensitive.

4. Ease of Physical and Electronic Access
Data sets released by their producers should be as accessible as possible, with accessibility defined
as the ease with which information can be obtained. Barriers to electronic access include making
data accessible only via submitted forms or systems that require browser-oriented technologies
(e.g., Flash, Javascript, cookies or Java applets). By contrast, providing an interface for users

https://whatis.techtarget.com/definition/fast-data
https://whatis.techtarget.com/definition/fast-data
https://www.voltdb.com/why-voltdb/big-data/
https://open.canada.ca/en/open-data-principles#toc95
https://open.canada.ca/en/open-data-principles#toc95
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to make specific calls for data through an Application Programming Interface (API) make data
much more readily accessible.

5. Machine readability
Machines can handle certain kinds of inputs much better than others. Data sets should be
released in widely-used file formats that easily lend themselves to machine processing (e.g. CSV,
XML). These files should be accompanied by documentation related to the format and how to
use it in relation to the data.

6. Non-discrimination
Non-discrimination refers to who can access data and how they must do so. Barriers to use of
data can include registration or membership requirements. Released data sets should have as few
barriers to use as possible. Non-discriminatory access to data should enable any person to access
the data at any time without having to identify him/herself or provide any justification for doing
so.

7. Use of Commonly Owned Standards
Commonly owned standards refer to who owns the format in which data is stored. For example, if
only one company manufactures the program that can read a file where data is stored, access to
that information is dependent upon use of that company’s program. Sometimes that program is
unavailable to the public at any cost, or is available, but for a fee. Removing this cost makes the
data available to a wider pool of potential users. Released data sets should be in freely available
file formats as often as possible.

8. Licencing
All data sets should be released under a recognized Open Data Licence. Such licences are designed
to increase openness and minimize restrictions on the use of the data.

9. Permanence
The capability of finding information over time is referred to as permanence. For best use by the
public, information made available online should remain online, with appropriate version-tracking
and archiving over time.

10. Usage Costs
All open data should be provided free of charge.

A preferred way of achieving FAIR, FAST and OPEN data distribution is to develop and maintain
new, online platforms that support collaborative compilation, sharing and geopublishing. Open-
GeoHub aims to provide a viable, worked example of how a new, open and collaborative web-based
platform can deliver soil spatial information on-demand and in nearly real time.
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9.3.8 New visualization and data analysis tools

Terrestrial resource inventories, and indeed spatial inventories of almost all environmental con-
ditions, will increasingly benefit from adopting and using new tools and platforms that enhance
interactive, real time data visualization and data analysis.
Spatial data increasingly needs to be presented in ways that support interactive, real time visual-
ization of 3 dimensions plus time. What is increasingly being referred to as 4D or 3D+ time. We
need to help users visualize, and appreciate, how soils vary with depth as well as in horizontal
space. And, also increasingly, we need to be able to help users visualize and understand how soils
can vary through time. OpenGeoHub is attempting to demonstrate newly available facilities for
visualizing, and interacting with, 3D and 3D+ time spatio-temporal data.
Every effort needs to be made to facilitate easy use of terrestrial resource inventory spatial data.
This should entail releasing spatial data that has both the content and the format required for
immediate ingestion into, and use in, critical end user applications. Users should be able to link
their applications to data supplier platforms and simple call up needed data.

9.4 The future of PSM: Embracing new organizational and governance
models

9.4.1 Overview

In the same way that new scientific and technological advances can be embraced to improve
future PSM any new, future, PSM activities should also take advantage of newer organizational
models that improve how collective activities can be organized and managed collaboratively and
cooperatively through innovations such as (Hengl et al, 2018c):

• Open data and platforms and procedures for acquiring and sharing data,
• Open, cloud-based, processing capabilities,
• Collaborative production of inputs and new outputs,
• Crowdsourcing and voluntary collaboration,
• Crowdfunding and blockchain funding systems,
• Web-based sponsorship and revenue opportunities,

9.4.2 Open data and platforms and procedures for acquiring and
sharing it

Open data is, of course, the key requirement for enabling maximum access to, and use of, point and
covariate data required to support collaborative PSM. Firewalls, paywalls and data silos typically
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act to restrict access to, and use of, valuable point and covariate data, Open data can be used
and reused, multiple times, often for unanticipated applications. Data need to be not only open
but also easily discoverable and accessible. This is where open platforms, such as OpenGeoHub,
come in. They can facilitate easy and effective access to, and use of, shared open data.

9.4.3 Open cloud-based processing capabilities

At the moment, most PSM activities take place on local computers using local processors. As
PSM proceeds and increasingly deals with much larger data sets at much finer spatial resolutions,
it may become less and less viable to download all data for local processing. Imagine trying to
download 5 to 10 m resolution raster data for an entire continent, or even the entire world, for
tens to perhaps hundreds of layers of covariate data. We may rapidly arrive at a situation where
it could take months to years to simply download such large volumes of data before any analyses
could take place. It such a situation, it no longer makes sense to try to download covariate data
sets to work with them locally.

Similarly, many big data applications have now accepted that it is far more efficient and affordable
to conduct their processing and analysis in the cloud using services such as Amazon cloud ser-
vices, Google Earth Engine or Microsoft cloud services. It has become too costly to assemble and
maintain the massive amounts of processing power, and memory, in house that are increasingly
required to process massive data sets using big data analytics.

Modelers can easily obtain and download all available covariate data for all point locations for
which they possess point observations or measurements. Typically, entire stacks of covariate data
can be identified and downloaded for thousands of point locations within just a few seconds of
submitting a query. This covariate data is all that is needed to create the matrices required to
support development, evaluation and finalization of multiple predictive models for PSM. Once an
optimum model (or models) has been developed, the model itself can be uploaded to a cloud based
processing service and the model can be run against all covariate data stored in the cloud, using
cloud based memory and processing capabilities. This is perhaps a preferable and more practical
way to implement PSM modelling for very large data sets.

9.4.4 Collaborative production of inputs and new outputs

It is likely that it will increasingly only be possible to produce next generation national to state
level PSM inventory products through some form of collaborative effort. It is very unusual for
any one agency or entity to have both the mandate and the resources to assume responsibility
for producing maps for entire countries or even entire provinces or states. Mapping and field
data collection activities tend to be fragmented in response to various jurisdictional mandates
and operational responsibilities. Agricultural departments are responsible for agricultural lands,
forestry for forested areas, parks departments for public parklands and environmental departments
for conservation areas. No one entity ever seems to have responsibility for mapping an entire
country or state. In addition, a majority of mapping and field data collection programs are now
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typically undertaken by private engineering and environmental consulting companies on contract
to industry or government clients. The people charged with collecting the field data seldom have
any responsibility or mandate for ongoing custodianship and preservation of the collected data. The
companies or government agencies that contracted to have the data collected themselves typically
lack the resources, expertise or motivation to conserve and maintain the field data delivered to
them, let alone to share it widely with others.

So, how can a situation be achieved where a large proportion of point data collected in the field, or
analysed in a lab, are collated, stored and maintained for widespread distribution, use and reuse in
PSM?We believe that what is required are both physical (or virtual) platforms where collaboration
and sharing can be facilitated and legal and organisational protocols that encourage, and indeed
require, saving, maintaining and sharing of point observation data collectively and collaboratively.

What is required is a change in attitude that is reflected by equivalent changes in regulations
and procedures. Governments and private sector industries that require, or commission, field data
collection activities need to adopt procedures and rules that require any new data to be deposited
in an open repository where it can be widely and easily accessed and shared. Similarly, laboratories
that undertake analysis of field collected samples need to be encouraged, or even obliged, to submit
analytical results for samples from point locations to some shared and open repository. If this were
to occur, then anyone interested in producing maps for any area would have access to all potentially
available and useful point data to inform and drive their predictive models. We offer OpenGeoHub
as an example of a physical platform where all of point data, covariate data and output predictive
maps can be widely and freely published, archived and shared.

The production of output maps can also be undertaken as a collective and collaborative exercise.
Individuals and agencies can work together to create and share input data sets (point data and
covariates) and models and to jointly produce maps for areas of common interest. The more people
that get involved in producing new maps using common, open databases, the greater the number,
variety and utility of maps we are likely to see produced.

9.4.5 Crowdsourcing and voluntary collaboration,

There is a role in PSM for crowdsourcing and voluntary contributions from citizen scientists
(Hengl et al, 2018c). Sampling plans can be developed and volunteers can be encouraged to go
to identified sampling locations to collect a series of easy to make observations using a provided
template. One active example of this approach is the Degree Confluence Project. This project
aims to have people visit each of the exact integer degree intersections of latitude and longitude
on Earth, posting photographs and a narrative of each visit online (https://en.wikipedia.org/wiki/
Degree_Confluence_Project). The project describes itself as “an organized sampling of the world”
and is purely based on enthusiasm.

Monitoring programs can vary significantly, ranging from community based monitoring on a local
scale, to large-scale collaborative global monitoring programs such as those focused on climate
change (Lovett et al, 2007). There is a global recognition that “environmental issues are best
handled with the participation of all concerned citizens”, a principal first articulated in the United
Nation’s Earth Summit Agenda 21 (UN, 1992). This principle was strengthened further in July,
2009, with the formal ratification of the Aarhus Convention which mandates participation by the

https://en.wikipedia.org/wiki/Degree_Confluence_Project
https://en.wikipedia.org/wiki/Degree_Confluence_Project
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public in environmental decision-making and access to justice in environmental matters (UNECE,
2008).

If volunteers can be advised where to go and what to observe, or collect, at sample locations
following a defined format or template, much useful data can be collected for use in PSM. For
example, it is relatively easy to make very useful field observations about whether a location is
a wetland organic soil or an upland mineral soil. This, in itself, is very useful to know. Similarly,
citizen scientists can be instructed to obtain valuable measurements such as depth of a soil to
bedrock, thickness of a topsoil horizon, color of a topsoil or subsoil horizon or presence or absence
of bare rock, water, stones or gullies. It is even possible to provide detailed instructions that permit
volunteers to estimate soil texture by application of manual hand texture assessments. Increasingly,
apps are likely to be developed for mobile phones that will support quantitative assessments of
soil color or structure and, possibly very soon, spectroscopic analysis of soil properties on-site.
So, future PSM activities should look for opportunities to engage citizen volunteers in collecting
field observations and measurements to extend what PSM is able to accomplish now using data
collected data by professionals.

9.4.6 Sponsorship, subscription, crowdfunding and blockchain funding
systems

Someone has to pay to finance the collection of new field and laboratory point data, the assembly,
storage and distribution of databases of relevant point data or environmental covariates at relevant
resolutions and the production, publication, maintenance and distribution of any models, output
maps or other end products. We can imagine several possible revenue streams that could be
adopted to fund a collaborative platform in a sustainable way. These include:

• Sponsorship,

• Subscriptions by participating partners,

• Crowdfunding,

• Blockchain funding,

• Advertising revenue,

Sponsors are those who provide funds willingly to support operations and activities that they
consider to be beneficial, possibly to themselves but, more importantly, to wider society. Sponsors
typically regard the services and products provided by the funded entity as delivering a desirable
public good or public service and to therefore be worthy of their financial support. Sponsors
typically do not dictate what gets done, or how, but sponsors do have some expectations that their
funding will ensure that the public good activities they support will continue to be undertaken
and delivered by the funding recipient in a consistent and responsible manner.

We can imagine that an open collaborative for natural resource inventory products might attract
sponsorship from philanthropic donors who elect to fund environmental activities undertaken in
support of the broader public interest. Some government agencies, or even commercial companies,
might also elect to offer ongoing sponsorship funding. The main role of sponsorship funding ought
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to be to provide some minimum base level of income that can pay for the ongoing costs associated
with maintaining basic operational capabilities. Examples of basic operational costs include ongo-
ing charges for paying for website development and maintenance, online storage, web traffic and
web based processing arising from user activity and system administration. These are basically
just the costs associated with keeping the lights on and the doors open. They ensure continuity
from year to year but do not usually fund major expansions or annual production activities.

Active contributors to, and users of, the products and services generated by a consortium or
collective of partners can help to self-fund the collective’s activities by agreeing to contribute
funds via some sort of continuing subscription. Partners may be able to justify paying an annual
subscription to sustain the collective activity because they, themselves, obtain benefits or reduce
internal expenditures they would otherwise normally pay for the same sets of services or activities
internally and individually. Sharing platforms for collecting, creating, hosting, publishing and dis-
seminating spatial environmental data could be more cost effective than building and maintaining
multiple separate platforms and functionalities individually (Fig. 9.2). These reduced, or avoided,
costs could justify contributing some funds to pay for, and sustain, the operations of the collective.
Sustaining subscriptions are a more stable and reliable way to fund the ongoing development and
maintenance of the collective’s activities and infrastructure because they can be more reliably
estimated and counted on. These funds can also help pay for new work and new data.
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Fig. 9.2 Recommended decision tree for designing a PSM project. In essence, users’ perspective and technical
settings should be the key for most of decisions when it comes to design of PSM projects.

One can imagine quite a large number of potential partners, that might be willing to agree to
contributing an annual sustaining subscription. Examples of the kinds of partners that might
subscribe include:

• Government agencies with a mandate or need to produce or use environmental data,

• Industrial and commercial companies that have responsibilities for submitting environmental
data,

• Engineering and environmental consulting companies that are typically paid to collect environ-
mental data and produce maps,

• NGOs and public interest groups that advocate for sustainability or environmental protection,
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• Universities and research institutions with interests in teaching or conducting environmental
research,

• Industry associations and professional certification bodies,

• Commercial companies that provide products or services in the areas of computing, spatial
analysis and the environment.

One would expect that partners willing to contribute a sustaining subscription would have some-
thing to gain from being active participants. They might contribute actively to adding to the
collections of field data or new maps produced or distributed by themselves or by the collective.
They might find it convenient and effective to use the platforms and infrastructure maintained
by the collective to assist them to not only produce new data but to publish and disseminate,
widely and effectively, any new data or maps they might produce. Producers of new maps and
data would have their capabilities and products highlighted and gain from exposure and credi-
bility. High volume users of data would gain from savings realized by having a single, one-stop
platform for finding and obtaining data they need and from the security they would feel in using
credible data produced using transparent processes in full public view. Universities and research
institutions would gain from having access to the latest and most complete data and methods
and to new facilities and new approaches to expose their students to. And commercial companies
that provide software, hardware or services to the environmental community can gain by being
associated with providing support for an entity that is providing high quality information as a
public good.

Crowdfunding is becoming an increasingly common way to secure money to conduct, and sustain,
public good activities. Users who benefit from accessing the site and using free data may well be
motivated to offer their support in the form of voluntary donations. Donors can be acknowledged
and thanked on the site by maintaining a web page that lists voluntary contributions.

It is becoming increasingly common for sites that offer free data or services to sustain themselves
by accepting revenue from advertisers that want to be associated with the product or services
provided by the site or just want to benefit from the exposure gained from high volumes of traffic
to the site.

9.4.7 A proposal for organizing and managing a new open collective

So, what is it that we would like to promote and implement as we proceed into the future? The
basic concept is to imagine, design and build a new, collaborative and cooperative framework for
collecting, analyzing, maintaining, producing and distributing spatial information about attributes
and classes of terrestrial landscapes. The idea may be thought of as a virtual network for creating
and supporting ongoing, comprehensive terrestrial resource inventories of all kinds and their re-
quired supporting infrastructures. The concept adopts, and extends, many of the elements of the
existing Global Soil Information Facilities (GSIF) (http://www.isric.org/content/soilgrids), and
of the recently launched OpenGeoHub Foundation’s LandGIS (http://landgis.opengeohub.org).

http://www.isric.org/content/soilgrids
http://landgis.opengeohub.org
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Fig. 9.3 LandGIS as a system for generating new added-value information immediately and affordably using
“old legacy data” i.e. without new investments. By importing, cleaning up and data mining of legacy soil data
we promote technology and knowledge transfer from data-rich countries to data-poor countries.

We imagine harnessing the possibilities for collective and cooperative action offered by new and
emerging methods for social networking and scientific cooperation (Fig. 9.3). The concept aims
to promote, incorporate and make use of all relevant new scientific and technical advances in the
assembly and processing of terrestrial spatial data. But the vision is not solely driven by technology
push from new scientific and technical methods. Rather, it is primarily driven by recognition of
the power inherent in emerging trends in crowd-sourcing and facilitated collective action.

Companies, such as Dupont, advertise that they are part of a global collaboratory, and recognize
that their businesses, and profit, benefit greatly from sharing much of their proprietary internal
research data with partners and even competitors. This recognizes the fact that many agencies and
companies are in the business of collecting and analyzing data to try to extract useful knowledge
or information from that data. The larger and more comprehensive the pool of data, the more
likely it is to yield new and valuable understandings or knowledge and then, from this, enable the
creation of new and useful, or profitable, products.

Automatically creating maps of the spatial distribution of terrestrial spatial entities, or their
attributes, represents one particular application of data mining techniques for extracting under-
standing and knowledge from data to produce new and useful products. We propose that by
cooperating to maximize the assembly and sharing of data about terrestrial entities, using best
available methods, we can expect to also maximize the knowledge, the information and the variety,
quality and value of new products that can be extracted from the assembled data. Our LandGIS
is now a proof of concept of an Open Data system where any group can contribute and use as a
publishing platform. We anticipate that our LandGIS will be further combined with data chan-
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nels produced by other groups, e.g. the landpotential.org project or similar, so that a top-down,
bottom-up (predictions based on global models combined with local verification and adjustments;
Fig. 7.2), can be realized.
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Fig. 9.4 The proposed Global Land Information System (built on the top of the LandGIS concept) and targeted
functionality: users on ground send local observations and measurements through their mobile phones, which
are then used to run and re-callibrate global models.

There are probably many viable ways in which a collective could be set up to organize and manage
the various collaborative activities required to implement a new virtual terrestrial resource inven-
tory entity. Many are likely to be attracted to the idea of setting up a semi-independent institute
affiliated with a university or research institute. For example, for many years, soil survey activities
in Canadian provinces, such as Alberta, were conducted officially under the auspices of Institutes
of Pedology that formalized cooperation among federal and provincial government departments
and university departments of soil science. Others might be attracted to the idea of spinning off
a notionally independent private sector company within which other entities could collaborate
to produce or distribute their data. Examples of private companies involved in distributing spa-
tial data include AltaLIS (https://beta.altalis.com) and Valtis (http://www.valtus.com) which
operate in Alberta.

We, quite understandably, favor an approach of creating a small, agile, not-for-profit foundation
that can act as a core entity for a larger network of partners and collaborators. The foundation can
provide essential back office types of support as well as shared infrastructure that supports and
facilitates all technical facets of the collection, assembly, production, publishing, dissemination
and use of spatial environmental data.

https://beta.altalis.com
http://www.valtus.com
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This is the concept behind the newly formed OpenGeoHub Foundation (https://opengeohub.org).
We see OpenGeoHub as an entity that can build, operate and maintain a core set of functionalities
and infrastructure required to support a wide variety of inventory type activities. This core func-
tionality can provide back office facilities and support that can be made use of by any entity that
desires to be actively involved in the collection, production or distribution of spatial environmental
information. Just as many companies and agencies have increasingly begun to outsource their data
storage, data processing and even key functions such as payroll and human resources, so too could
entities involved in the production or use or spatial data outsource many of their functions to
OpenGeoHub. It is expensive and time consuming to build and maintain custom functionality in
house to support the production and distribution of inventory spatial data. Why not build it well
once and make this functionality available to everyone? If some desired functionality is missing,
then build it inside the foundation so that all can benefit from using the new functionality. Why
spend money and time building multiple versions of systems with equivalent functionality and
purpose when one will do for all? Then the partner entities can concentrate on doing what their
mandates instruct them to do, and not on building and maintaining separate spatial analysis and
spatial distribution systems and infrastructures.

We would hope that OpenGeoHub can act as a fully functional, worked example of how collabo-
ration and collective action in the area of production and delivery of environmental spatial data
could be organized and implemented efficiently and effectively. Once the concept has been demon-
strated and accepted, it might well prove useful to replicate or clone the concept, including all
of its functionalities, for use at national, state or regional levels. As with any other concept that
works, cloning to set up franchise operations is widely accepted. It is not necessary to reinvent
the wheel to set up a cloned franchise operation. Most of the design and functionality can simply
be replicated for use at the local franchise level. We envisage OpenGeoHub as a test case and an
incubator that, if successful, could form a template for many other successful spin-offs.

https://opengeohub.org
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